SECOND MIDTERM
 MATH 104C, UCSD, SPRING 18

You have 80 minutes.

There are 6 problems, and the total number of points is 70. Show all your work. Please make your work as clear and easy to follow as possible.
$\overline{\underline{~}}$
Name: \qquad
Signature: \qquad
Student ID \#:

Problem	Points	Score
1	15	
2	10	
3	15	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	70	

1. (15pts) (i) Give the definition of the p-adic valuation of an integer.

If n is an integer and we write $n=p^{e} m$ where $(m, p)=1$ then e is the p-adic valuation of n.
(ii) Give the definition of the norm of an element of $\mathbb{Z}[\sqrt{d}]$.

If $\alpha=x+y \sqrt{d}$ then $\bar{\alpha}=x-y \sqrt{d}$ and

$$
\begin{aligned}
N(\alpha) & =\alpha \bar{\alpha} \\
& =x^{2}-y^{2} d .
\end{aligned}
$$

(iii) Give the definition of the fundamental solution of Pell's equation $x^{2}-d y^{2}=1$.

The fundamental solution $\delta=x+y \sqrt{d}$ of Pell's equation has the property that $x>0$ and $y>0$ and δ is minimal subject to these conditions.
2. (10pts) If α is a 5 -adic integer such that

$$
\alpha^{2} \in-1 \quad \text { and } \quad \alpha=3+a_{1} \cdot 5+a_{2} \cdot 5^{2}+a_{3} \cdot 5^{3}+\ldots
$$

then determine a_{1}, a_{2} and a_{3}.

Note that $3^{2}=9 \equiv 4 \bmod 5$, so the first coefficient is indeed correct. Let $f(x)=x^{2}+1$. Then $f^{\prime}\left(x_{0}\right)=2 x_{0}$. We want to choose t so that $3+5 t$ satisfies the equation

$$
\left(3^{2}+1\right)+(2 \cdot 3) \cdot 5 \cdot t \equiv 0 \quad \bmod 5^{2} .
$$

This reduces to

$$
6 t \equiv-2 \bmod 5
$$

so that $t=3$. Next we want to choose t so that $3+3 \cdot 5+t \cdot 5^{2}$ satisfies

$$
(3+3 \cdot 5)^{2}+1+2 \cdot(3+3 \cdot 5) t \cdot 5^{2} \equiv 0 \quad \bmod 5^{3}
$$

This reduces to

$$
13+6 t \equiv 0 \quad \bmod 5,
$$

so that $t=2$.
Finally we want to choose t so that $3+3 \cdot 5+2 \cdot 5^{2}+t \cdot 5^{3}$ satisfies

$$
\left(3+3 \cdot 5+2 \cdot 5^{2}\right)^{2}+1+2 \cdot 3\left(3+3 \cdot 5+2 \cdot 5^{2}\right) t \equiv 0 \bmod 5
$$

This reduces to

$$
37+6 t \equiv 0 \quad \bmod 5
$$

so that $t=3$.
Thus

$$
a_{1}=3 \quad a_{2}=2 \quad \text { and } \quad a_{3}=3 .
$$

3. (15pts) (i) State Legendre's theorem.

If a, b and c are square-free, relatively coprime integers then the equation

$$
a x^{2}+b y^{2}+c z^{2}=0
$$

has a solution if and only if a, b and c don't all have the same sign and $-b c,-c a,-a b$ are quadratic residues of $|a|,|b|$ and $|c|$.

Decide whether the equations have non-trivial integer solutions:
(ii)

$$
5 x^{2}-3 y^{2}+2 z^{2}=0
$$

$a=5, b=-3$ and $c=2$ certainly don't all have the same sign; $6 \equiv 1=1^{2}$ is a quadratic residue of 5 , but $-10 \equiv 2$ is not a quadratic residue of 3 . Thus this equation does not have any integer solutions.

$$
\begin{equation*}
7 x^{2}-y^{2}+2 z^{2}=0 \tag{iii}
\end{equation*}
$$

$a=7, b=-1$ and $c=2$ certainly don't all have the same sign; $2 \equiv 9=3^{2}$ is a quadratic residue of $7 ;|b|=1$ and so there is nothing to check for $-14 ; 7 \equiv 1 \bmod 2$ is a quadratic residue. Thus this equation does have integer solutions.
In fact $x=z=1$ and $y=3$ is one solution.
4. (10pts) Show that if $\xi \in \mathbb{R}$ and $t \in \mathbb{N}$ then we may find integers x and $0<y \leq t$ such that

$$
|y \xi-x|<\frac{1}{t}
$$

Consider the fractional parts $\{i \cdot \xi\}$, for $0 \leq i \leq t$. These belong to the interval $[0,1)$. As there $t+1$ choices for i and the union of the t intervals $[(l-1) / t, l / t)$ is $[0,1)$, it follows that two fractional parts must lie in the same interval, so that

$$
|\{j \cdot \xi\}-\{i \cdot \xi\}|<\frac{1}{t}
$$

where $0 \leq i<j \leq t$. Let

$$
y=j-i \in \mathbb{N} \quad \text { and } \quad x=\llcorner j \cdot \xi\lrcorner-\llcorner i \cdot \xi\lrcorner \in \mathbb{Z} .
$$

Then $y \leq t$ and

$$
\begin{aligned}
y \xi-x & =j \cdot \xi-i \cdot \xi-x \\
& =j(\llcorner\xi\lrcorner+\{\xi\})-i(\llcorner\xi\lrcorner+\{\xi\})-x \\
& =(j \cdot\llcorner\xi\lrcorner-i \cdot\llcorner\xi\lrcorner)-x+j \cdot\{\xi\}-i \cdot\{\xi\} \\
& =j \cdot\{\xi\}-i \cdot\{\xi\} .
\end{aligned}
$$

5. (10pts) Prove that the circle $x^{2}+y^{2}=r(r>0)$ is a curve of genus zero but that if $r=3$ then there is no parametrisation $x=\phi(t)$ and $y=\psi(t)$ by rational functions with rational coefficients.

Look at lines through the point $(-\sqrt{r}, 0)$,

$$
y=m(x+\sqrt{r})
$$

These intersect the circle at one further point. We get

$$
x^{2}+m^{2}(x+\sqrt{r})^{2}=r,
$$

so that

$$
\left(1+m^{2}\right) x^{2}+2 m^{2} \sqrt{r} x+m^{2} r=r .
$$

Thus

$$
x^{2}+\frac{2 m^{2} \sqrt{r}}{1+m^{2}} x+\frac{m^{2}-1}{m^{2}+1} r=0 .
$$

As one of the roots is $-\sqrt{r}$ and the product of the roots is

$$
\frac{m^{2}-1}{m^{2}+1} r
$$

we see that x is a rational function of m. It follows that y is also a rational function of m. Thus we have a curve of genus zero.
Suppose $(x=\phi(t), y=\psi(t))$ are rational functions with rational coefficients. The denominators of $\phi(t)$ and $\psi(t)$ are polynomials in t. Therefore there are only finitely many values of t such that $\phi(t)$ and $\psi(t)$ are not defined.
Pick a rational number $t=q$ not equal to one of these values. The corresponding point (x, y) is a rational point. Clearing denominators in the usual way, we would get an integer solution of the equation

$$
x^{2}-3 y^{2}+z^{2}=0
$$

As -1 is not a quadratic residue of 3 this contradicts Legendre's theorem.
6. (10pts) Show that a p-adic number

$$
\alpha=p^{n}\left(a_{0}+a_{1} \cdot p+a_{2} \cdot p^{2}+a_{3} \cdot p^{3}+\ldots\right)
$$

represents a rational if and only if a_{1}, a_{2}, \ldots is eventually periodic.

There is no harm in assuming that $n=0$ so that α is a p-adic integer. If $a_{0}, a_{1}, a_{2}, \ldots$ is eventually periodic then α is a sum of an integer (which is the same as p-adic integer with only finitely many non-zero terms) plus finitely many p-adic integers of the form

$$
\beta=1+p^{k}+p^{2 k}+p^{3 k}+\ldots .
$$

Note that

$$
\beta-1=p^{k} \beta
$$

Thus

$$
\beta=\frac{-1}{p^{k}-1}
$$

is a rational number. As a sum of rational numbers is rational, it follows that α is a rational number.
Conversely, suppose that a / b is rational number. As the sum of periodic number is periodic, we may assume that $a=1$. Note that multiplying by -1 does not change whether or not $a_{0}, a_{1}, a_{2}, \ldots$ is eventually periodic. So we may assume that $a=-1$. We may also assume that b is coprime to p. Note that

$$
p^{\varphi(b)} \equiv 1 \quad \bmod b,
$$

by Euler's theorem, so that b divides $p^{k}-1$, where $k=\varphi(b)$. But then

$$
\frac{1}{b}=\frac{c}{p^{k}-1},
$$

where $c>0$ is an integer, and we are done by what we already proved.

Bonus Challenge Problems

7. (10pts) If d is square-free then show that the solutions of

$$
x^{2}-d y^{2}=1
$$

is naturally a group isomorphic to $\mathbb{Z} \times \mathbb{Z}_{2}$. You may assume that there is a non-trivial solution.

See lecture 12.
8. (10pts) Prove Legendre's theorem.

See lecture 7 .

