7.3.2. Let
\[n = N(\rho) \]
\[= \rho \bar{\rho}. \]
Then \(n \) is an integer and \(\rho \) divides \(n \). As \(\rho \) is a prime it is not a unit and so \(n > 1 \). Let \(n = p_1 p_2 \ldots p_k \) be the prime factorisation of \(n \). As \(\rho \) is a prime, \(\rho \) must divide one of the factors of the prime factorisation of \(n \), so that \(\rho \) must divide a prime \(p = p_i \).

7.3.3. If \(1+i \) divides \(a+bi \) then \(2 = N(1+i) \) divides \(N(a+bi) = a^2 + b^2 \). Thus \(a \equiv b \mod 2 \).

Now suppose \(a \equiv b \mod 2 \). If \(a \) and \(b \) are even then \(2 \) divides \(a + bi \) so that \(1+i \) divides \(a + bi \). Suppose that \(a \) and \(b \) are both odd. Then
\[a + bi - (1 + i) = (a - 1) + (b - 1)i. \]
As \(a - 1 \) and \(b - 1 \) are both even, \((a - 1) + (b - 1)i \) is divisible by \(1 + i \), so that \(a + bi \) divides \(1 + i \).

7.3.4. If \(n \) is square-free and
\[x^2 + y^2 = n \]
then \((x, y) = 1 \). Thus every representation of a sum of squares is automatically a primitive representation. It follows that \(p_2(n) = r_2(n) \).

If \(n \) is square-free then \(4 \) does not divide \(n \). Theorem 7.5 implies that \(p_2(n) = 0 \) if and only if there is a prime \(p \equiv 3 \mod 4 \) dividing \(n \) and Theorem 7.6 implies that \(r_2(n) = 0 \) under the same conditions. If there is no prime congruent to \(3 \) modulo \(4 \) dividing \(n \) then
\[\tau(n') = 2^s, \]
so that Theorem 7.3 and Theorem 7.5 imply \(p_2(n) = r_2(n) \).

7.3.6. Define a function
\[f : \mathbb{N} \rightarrow \mathbb{Z} \]
by the rule
\[f(m) = \begin{cases}
0 & \text{if } m \text{ is even} \\
1 & \text{if } m \equiv 1 \mod 4 \\
-1 & \text{if } m \equiv 3 \mod 4.
\end{cases} \]
We check that
\[f(ab) = f(a)f(b) \]
case by case. If a or b is even then so is ab and both sides are zero. If a and b are both congruent to 1 modulo 4 then so is ab and both sides are equal to 1. If $a \equiv 1 \mod 4$ and $b \equiv 3 \mod 4$ then $ab \equiv 3 \mod 4$ and both sides are -1. By symmetry we just need to consider the case when both a and $b \equiv 3 \mod 4$. In this case $ab \equiv 1 \mod 4$ and both sides are equal to 1.

It follows that

$$F(n) = \sum_{d|n} f(d)$$

is multiplicative.

Note that

$$F(n) = \sum_{d|n} f(d)$$

$$= \sum_{d|n, d\equiv 1 \mod 4} f(d) + \sum_{d|n, d\equiv 3 \mod 4} f(d)$$

$$= \sum_{d|n, d\equiv 1 \mod 4} 1 - \sum_{d|n, d\equiv 3 \mod 4} 1$$

$$= \tau_1(n) - \tau_3(n).$$

By (4.6) we just have to show that

$$\delta \tau(n_1) = F(n) \quad \text{where} \quad n = 2^u n_1 n_2,$$

n_1 is a product over primes congruent to 1 modulo 4, n_2 is a product over primes congruent to 3 modulo 4, and

$$\delta = \begin{cases}
1 & \text{if } n_2 \text{ is a square} \\
0 & \text{otherwise}.
\end{cases}$$

Since both sides of this equation are multiplicative, it suffices to check what happens when $n = p^e$ is a power of a prime.

There are three cases. If $p = 2$ then $n_1 = 1$, $\delta = 1$ and

$$F(n) = F(2^e)$$

$$= 1$$

$$= \delta \tau(n_1).$$

If $p \equiv 1 \mod 4$ then $n_1 = n$, $\delta = 1$ and

$$F(n) = F(p^e)$$

$$= (1 + e)$$

$$= \delta \tau(n_1).$$

2
If \(p \equiv e \mod 4 \) then \(n_1 = 1, \delta = 1 \) unless \(e \) is odd and
\[
F(p^e) = \begin{cases}
1 & \text{if } e \text{ is even} \\
0 & \text{if } e \text{ is odd.}
\end{cases}
\]

7.3.7. Consider the Diophantine equation
\[x^2 + 1 = y^n, \]
where \(n > 1 \). We look for solutions with \(x > 0 \).
If \(x \) is odd then the LHS is even. It follows that the RHS is divisible by 4, as \(n > 1 \). But then \(x^2 \) is congruent to 3 modulo 4, a contradiction.

Now suppose that \(n = 2m \) is even. Then
\[y^n - 1 = (y^m - 1)(y^m + 1). \]
The only possible common factor of \(y^m - 1 \) and \(y^m + 1 \) is 2. As \(x^2 \) is a square, it follows that \(n \) is not even.
Note that
\[x^2 + 1 = (x + i)(x - i). \]
If \(\rho \) divides both \(x + i \) and \(x - i \) then \(\rho \) must divide \(2i \), so that \(\rho \) divides 2. As \(x \) is an odd integer it follows that \(\rho \) is a unit. Thus \((x + i, x - i) = 1 \).
If \(\rho \) is a Gaussian prime that divides \(x + i \) then \(\rho \) must divide \(y \) but it cannot divide \(x - i \). Suppose that the largest power of \(\rho \) which divides \(y \) is \(\rho^e \). As \(\rho^en \) divides \(y^n \) it follows that \(\rho^en \) divides \(x + i \), but no larger power. It follows that \(x + i = (a + bi)^n \) is an \(n \)th power.
As \(x + i = (a + bi)^n \), if we split this equation into its real and imaginary parts, we get
\[
x = a^n - \binom{n}{2} a^{n-2}b^2 + \binom{n}{4} a^{n-4}b^4 + \ldots \quad \text{and} \quad 1 = \binom{n}{1} a^{n-1}b - \binom{n}{3} a^{n-3}b^3 + \ldots.
\]
Note that \(b \) divides every term of the RHS of the second expansion. As the LHS is 1, it follows that \(b = \pm 1 \).
In this case the equations reduce to
\[1 = a^n - \binom{n}{2} a^{n-2} + \binom{n}{4} a^{n-4} + \ldots \quad \text{and} \quad \pm 1 = a^{n-1} - \binom{n}{3} a^{n-3} + \ldots. \]
If \(n = 3 \) the second equation reduces to
\[\pm 1 = 3a^2 - 1. \]
Thus either \(a = 0 \) or \(3a^2 = 2 \), not possible.
If \(n = 5 \) the second equation reduces to
\[\pm 1 = 5a^4 - 10a^2 + 1. \]
Thus either
\[a^2 = 5 \quad \text{or} \quad 5a^4 - 10a^2 + 2 = 0. \]
Neither of these equations have integral solutions.
If \(n = 7 \) the second equation reduces to
\[\pm 1 = 7a^6 - 35a^4 + 21a^2 - 1. \]
Thus either
\[a^4 - 5a^2 + 3 = 0 \quad \text{or} \quad 7a^6 - 35a^4 + 21a^2 - 2 = 0. \]
If we view the first equation as a quadratic in \(a^2 \), then there are no rational roots, so no rational roots for \(a \) either. The second equation has no integer roots.

7.4.1. An integer is not representable as the sum of three cubes if and only if it is of the form \(4^k(8k + 7) \). The number of integers up to \(N \) which are divisible by \(4^k \) is
\[\frac{N}{4^k}. \]
The number of such integers congruent to 7 modulo 8 is at least
\[\frac{\lfloor \frac{N}{8} \rfloor}{4^k}. \]
Note that these numbers don’t overlap, since if \(N = 4^km \) and \(m \) is congruent to 7 modulo 8, then \(N \) is not divisible by \(4^{k+1} \). The number of integers up to \(N \) which are not representable as the sum of three cubes is then the sum
\[\sum \frac{\lfloor \frac{N}{8} \rfloor}{4^k}. \]
If we remove the round down we get
\[\sum \frac{N}{8 \cdot 4^k}, \]
a geometric series. If we sum the geometric series we get
\[\frac{N}{8(1 - 3/4)} = \frac{N}{6}. \]
The error is at most twice the number of terms in the sum, which is at most
\[2 \log_4 N. \]
If we divide this by \(N \) then the ratio goes to zero.

7.4.2. If \(p = 2 \) then take \(x = y = 1 \) and \(z = 0 \). Otherwise let \(z = 1. \)
We have to solve
\[x^2 + y^2 + c \equiv 0 \mod p. \]
Note that there are \((p + 1)/2\) distinct non-zero numbers of the form

\[ax^2 \quad \text{and} \quad -bz^2 + c, \]

modulo \(p\), since

\[ai^2 \equiv aj^2 \mod p \quad \text{implies that} \quad i^2 \equiv j^2 \mod p, \]

and we already saw in lectures that the latter are distinct if \(0 \leq i < j \leq (p - 1)/2\).

Since

\[\frac{p + 1}{2} + \frac{p + 1}{2} = p + 1 > p, \]

unless \(p = 3\), it follows that we can choose \(ax^2\) and \(-by^2 + c\) so that they coincide for some choice of \(x\) and \(y\). Thus we can solve the original equation.

7.4.3. We show that every integer is of the form

\[\pm x^2 \pm y^2 \pm z^2. \]

We may assume that \(n\) is a natural number. As

\[2n + 1 = (n + 1)^2 - n^2, \]

it follows that every odd natural number is the difference of two squares. If \(n\) is even then \(n + 1\) is odd. If \(n + 1 = x^2 - y^2\) then

\[n = x^2 - y^2 - 1^2. \]

Suppose that

\[6 = \pm x^2 \pm y^2. \]

At least one term is positive. Possibly switching \(x\) and \(y\) we have

\[6 = x^2 \pm y^2. \]

Consider the equation

\[x^2 + y^2 = 6. \]

\(x\) and \(y\) are both at most two and it is easy to see there is no solution. Otherwise we have

\[x^2 - y^2 = 6. \]

As

\[x^2 - y^2 = (x - y)(x + y), \]

either \(x - y = 1\) and \(x + y = 6\) or \(x - y = 2\) and \(x + y = 3\). In both cases, neither \(x\) nor \(y\) are natural numbers.

Thus \(6\) requires all three terms.
7.4.4. We check to see that -2 is a residue of p. We have

$$\left(\frac{-2}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{2}{p}\right).$$

If $p \equiv 1 \mod 8$ then $p \equiv 1 \mod 4$ and so -1 is a residue of p. On the other hand, 2 is also a quadratic residue of p, so that -2 is a residue of p.

If $p \equiv 3 \mod 8$ then $p \equiv 3 \mod 4$ and so -1 is not a residue of p. On the other hand, 2 is also not a quadratic residue of p, so that -2 is a residue of p.

Thus -2 is a residue of p if $p \equiv 1$ or $3 \mod 8$. By (7.2.2) it follows that we may find x and y such that

$$x^2 + 2y^2 = p.$$

But then

$$x^2 + y^2 + y^2 = p.$$