MODEL ANSWERS TO THE THIRD HOMEWORK

8.1.1. First note that \(a = 18, \) \(b = 20 \) and \(c = -35 \) have no common factors. \(a \) is divisible by \(9 = 3^2 \) and \(b \) is divisible by \(4 = 2^2. \) So we are reduced to considering \(a = 2, \) \(b = 5 \) and \(c = -35. \) \(5 = (5, -35) \) is a common factor of \(b \) and \(c. \) So we are reduced to considering \(a = 10, \) \(b = 1 \) and \(c = -7. \) We are now ready to apply Legendre’s theorem.

\(a, b \) and \(c \) don’t all have the same sign. We now check whether \(-ab\) is a residue of \(-c\) and \(-bc \) is a residue of \(a. \) \(-10 \) modulo \(7 \) is the same as \(4 \) modulo \(7, \) which is visibly a residue of \(7. \) However \(7 \) is not a residue of \(10, \) since

\[
1^2 = 1 \quad 2^2 = 4 \quad 3^2 = 9 \quad 4^2 \equiv 6 \mod 10 \quad \text{and} \quad 5^2 \equiv 5 \mod 10.
\]

Thus there are no solutions.

8.1.2. Suppose \(x, y \) and \(z \) is a solution of

\[
ax^2 + by^2 + cz^2 = 0,
\]

with \(x, y \) and \(z \) not all zero. Suppose that \(z = 0. \) If \(p|a \) then \(p|by^2. \) But then \(p|y^2, \) so that \(p^2|ax^2. \)

It is enough to find \(x, y \) and \(z \) non-zero such that

\[
\max(x, y, z) < 2 \max(a^2, b^2, c^2),
\]

since we can always flip the sign of any variable.

Possibly switching \(x, y \) and \(z \) and flipping the sign of \(a, b \) and \(c, \) we may assume that \(a > 0, b > 0 \) and \(c > 0. \)

We must have \(z > 0 \) and at least one of \(x \) and \(y > 0. \) Suppose that \(y > 0 \) and yet \(x = 0. \) Then \(by^2 = cz^2. \) The only possibility is that \(b|z \) but then \(b^2|cz^2, \) so that \(b|y^2. \) This is only possible if \(b = 1. \) Similarly \(c = 1. \) In this case we could take the solution \(x = 1, y = 1 \) and

In the proof of (7.1) we find \(x, y \) and \(z \) such that

\[
|x| < \sqrt{|bc|} \quad |y| < \sqrt{|ca|} \quad \text{and} \quad |z| < \sqrt{|ab|}.
\]

and either

\[
a^2 + by^2 + cz^2 = 0 \quad \text{or} \quad a(az + by)^2 + b(yz - ax)^2 + c(z^2 + ab)^2 = 0.
\]

Suppose we have the former case. Using the inequality between arithmetic and geometric means we get

\[
x \leq \frac{b - c}{2} \quad y \leq \frac{a - c}{2} \quad \text{and} \quad z \leq \frac{a + b}{2}.
\]
Since \(a \leq a^2 \) and the average of two of \(a^2, b^2 \) and \(c^2 \) is at most the maximum, it follows easily that
\[
\max(x, y, z) < 2 \max(a^2, b^2, c^2).
\]
In the latter case
\[
|xz + by| < \sqrt{-ac} + b\sqrt{-ac} = 2\sqrt{-ac} \leq b(a - c) \leq 2 \max(a^2, b^2, c^2).
\]
We obtain the same bound for \(yz - ax \) by a symmetric argument. We have
\[
|z^2 + ab| < ab + ab = 2ab \leq 2 \max(a^2, b^2, c^2).
\]

8.1.3. We may as well assume that \(c = 1 \). As \(x^2 + y^2 = z^2 \) it suffices to check that \(x \) and \(y \) have no common factors. As \(a \) and \(b \) have opposite parity, it follows that \(x \) is odd. Suppose \(p|a \) is an odd prime. If \(p|x \) then \(p|b \), which contradicts the fact that \((a, b) = 1 \). Thus \(x \) and \(y \) are coprime.

8.1.5. We know all of the solutions are given by
\[
x = c(a^2 - b^2) \quad y = 2abc \quad \text{and} \quad z = c(a^2 + b^2),
\]
where \(a \) and \(b \) are integers and \(2c \in \mathbb{Z} \). If we assume that \((x, y) = 1 \) and \(x \) is odd then \(y \) is even, \((a, b) = 1 \) and \(c \neq 1 \). If \(z > 0 \) then \(c = 1 \). We may as well assume that \(a > b \).

This gives us all solutions with \(x \) odd. To get all solutions with \(x \) even just switch \(x \) and \(y \).

8.1.7. We first make the change of variables:
\[
x = x' + y \quad y = y' \quad \text{and} \quad z = z'.
\]
This reduces our quadratic to
\[
x^2 + 2y^2 + 5z^2 + 100yz + 40xz.
\]
Now make the change of variables:
\[
x = x' - 20z \quad y = y' \quad \text{and} \quad z = z'.
\]
This reduces our quadratic to
\[
x^2 + 2y^2 - 395z^2 + 100yz
\]
Now make the change of variables:

\[x = x', \quad y = y' - 25z \quad \text{and} \quad z = z'. \]

This reduces our quadratic to

\[x^2 + 2y^2 - 1645z^2. \]

8.1.9. We use the same method as in class. Look at lines through \((-\sqrt{r}, 0)\) of slope \(m\),

\[y = m(x + \sqrt{r}). \]

Plugging this into the equation for the circle we get

\[x^2 + m^2(x + \sqrt{r})^2 = r. \]

Thus

\[(1 + m^2)x^2 + m\sqrt{r}x + m^2r = r. \]

It follows that

\[x^2 + \frac{m}{1 + m^2}x + \frac{m^2 - 1}{1 + m^2} = 0. \]

The root not corresponding to \(x = -\sqrt{r}\) is then

\[x = \sqrt{r}\frac{1 - m^2}{1 + m^2} \quad \text{so that} \quad y = \sqrt{r}\frac{2m}{1 + m^2}. \]

Suppose that we could find a parametrisation by rational functions with rational parameters

\[(x, y) = \left(\frac{a(t)}{b(t)}, \frac{c(t)}{d(t)}\right)\]

for the circle \(x^2 + y^2 = 3\). Here \(a(t), b(t), c(t)\) and \(d(t)\) are polynomials in \(t\). \(b(t)\) and \(d(t)\) have only finitely many zeroes. Pick a rational number \(t = t_0\) not one of these zeroes. Then we get a rational point \((x_0, y_0)\) on the circle \(x^2 + y^2 = 3\).

Clearing denominators in the usual way we would get an integral solution of \(x^2 + y^2 - 3z^2 = 0\). By Legendre this would imply \(-1\) is a residue of 3. But \(-1 \equiv 2 \mod 3\) and this is not a residue of 3.