PRACTICE PROBLEMS FOR THE FIRST MIDTERM

1. Give the definition of:
(i) a representation as a sum of two squares.
(ii) a primitive representation.
(iii) $p_{2}(n)$.
(iv) an involution.
(v) the conjugate of a Gaussian integer.
(vi) the norm of a Gaussian integer.
(vii) $r_{2}(n)$.
(viii) a curve of genus zero.
2. If a is not divisible by m and $1<\lambda<m$ then show that we can find $1 \leq x<\lambda$ and $1 \leq|y| \leq m / \lambda$ such that $a x \equiv y \bmod m$.
3. Suppose that $n>1$ is an integer of which -1 is a quadratic residue. Exhibit a correspondence between solutions of the equation $u^{2} \equiv-1$ $\bmod n$ and pairs of integers x and y such that
$n=x^{2}+y^{2} \quad x>0 \quad y>0 \quad(x, y)=1 \quad$ and $\quad y \equiv u x \quad \bmod n$.
4. Show that every positive prime of which -2 is a quadratic residue can represented in the form $x^{2}+2 y^{2}$.
5. Show that every prime congruent to 1 or 3 modulo 8 is a sum of three squares.
6. Factor

$$
1,000,009=972^{2}+235^{2}
$$

