PRACTICE PROBLEMS FOR THE SECOND MIDTERM

1. Give the definition of:
(i) a curve of genus zero.
(ii) p-adic valuation.
(iii) p-adic absolute value.
(iv) p-adic integer.
(v) p-adic number.
(vi) Cauchy sequence.
(vii) components of an element of $\mathbb{Z}[\sqrt{d}]$.
(viii) conjugate of an element of $\mathbb{Z}[\sqrt{d}]$.
(ix) norm of an element of $\mathbb{Z}[\sqrt{d}]$.
(x) fundamental solution of Pell's equation.
2. (i) Find the first few terms of the 7 -adic expansion of $3 / 28$.
(ii) Find the first few terms of a 13 -adic number such that $x^{2}=-1$.
3. Show that there are curves of genus 0 which don't have parametrisations by rational functions with rational coefficients.
4. State Legendre's theorem. Do the following equations have integral solutions?
(i)

$$
x^{2}+2 y^{2}+3 z^{2}=0 .
$$

(ii)

$$
5 x^{2}+7 y^{2}-3 z^{2}=0
$$

$$
\begin{equation*}
-5 x^{2}+7 y^{2}-3 z^{2}=0 . \tag{iii}
\end{equation*}
$$

5. Show that there is an integer $|k| \leq 1+2 \sqrt{d}$ such that

$$
x^{2}-d y^{2}=k
$$

has infinitely many solutions.
6. Show that

$$
x^{2}-d y^{2}=1
$$

has a non-trivial solution.
7. Show that a p-adic number α belongs to \mathbb{Q} if and only if its coefficients are eventually periodic.
8. Assuming that $x^{2}-d y^{2}=-1$ has a solution, find an expression for the general solution.

