FIRST MIDTERM
MATH 104B, UCSD, WINTER 18

You have 80 minutes.

There are 4 problems, and the total number of points is 70. Show all your work. Please make your work as clear and easy to follow as possible.

<table>
<thead>
<tr>
<th>Name:</th>
<th>Signature:</th>
<th>Student ID #:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>
1. (15pts) (i) *Give the definition of $\pi(x)$.*

The number of primes up to x.

(ii) *Give the definition of the Möbius function.*

The function $\mu: \mathbb{N} \rightarrow \mathbb{N}$ defined by the rule

$$
\mu(n) = \begin{cases}
(-1)^\nu & \text{if } n \text{ is the product of } \nu \text{ distinct primes} \\
0 & \text{otherwise.}
\end{cases}
$$

(iii) *Give the definition of the fractional part.*

If x is real number and $\lfloor x \rfloor$ is the largest integer less than x then the fractional part is

$$\{ x \} = x - \lfloor x \rfloor$$
2. (15pts) Let x, x_1 and x_2 be real numbers and let n be an integer. Prove that

(i) $\lfloor x + n \rfloor = \lfloor x \rfloor + n$.

As $\lfloor x \rfloor \leq x$ it follows that $\lfloor x \rfloor + n \leq \lfloor x + n \rfloor$. As $\lfloor x + n \rfloor \leq x + n$ it follows that $\lfloor x + n \rfloor - n \leq x$. As the LHS is an integer it follows that $\lfloor x + n \rfloor - n \leq \lfloor x \rfloor$. Adding n to both sides we get $\lfloor x + n \rfloor \leq \lfloor x \rfloor + n$. As we have an inequality both ways we must have an equality $\lfloor x + n \rfloor = \lfloor x \rfloor + n$.

(ii) $\lfloor x_1 \rfloor + \lfloor x_2 \rfloor \leq \lfloor x_1 + x_2 \rfloor$.

Since $\lfloor x_i \rfloor \leq x_i$ for $i = 1, 2$ we have $\lfloor x_1 \rfloor + \lfloor x_2 \rfloor \leq x_1 + x_2$. As the LHS is an integer it follows that $\lfloor x_1 \rfloor + \lfloor x_2 \rfloor \leq \lfloor x_1 + x_2 \rfloor$.

(iii) Assuming that n is a natural number, prove that

$$\frac{x}{n} = \frac{\lfloor x \rfloor}{n}.$$

As $\lfloor x \rfloor \leq x$ it follows that $\frac{\lfloor x \rfloor}{n} \leq \frac{x}{n}$.

But then $\frac{\lfloor x \rfloor}{n} \leq \frac{x}{n}$ so that $\frac{\lfloor x \rfloor}{n} \leq \frac{\lfloor x \rfloor}{n}$, as the LHS is an integer.

On the other hand, as $\frac{x}{n} \leq \frac{\lfloor x \rfloor}{n}$ it follows that $n\frac{x}{n} \leq x$.

so that $\frac{x}{n} \leq \frac{\lfloor x \rfloor}{n}$ and so $\frac{x}{n} \leq \frac{\lfloor x \rfloor}{n}$.

As we have an inequality both ways, we have equality.
3. (30pts) Let \(f : \mathbb{N} \rightarrow \mathbb{C} \) be a function and define \(F : \mathbb{N} \rightarrow \mathbb{C} \) by the rule
\[
F(n) = \sum_{d|n} f(d).
\]

(i) Show that if \(f \) is multiplicative then \(F \) is multiplicative.

Suppose that \(m \) and \(n \) are coprime. Note that if \(d \) divides \(mn \) then \(d = d_1d_2 \) where \(d_1 \) divides \(m \) and \(d_2 \) divides \(n \). We have
\[
F(mn) = \sum_{d|m,n} f(d)
\]
\[
= \sum_{d_1|m, d_2|n} f(d_1d_2)
\]
\[
= \sum_{d_1|m} \sum_{d_2|n} d_2|n f(d_1)f(d_2)
\]
\[
= \sum_{d_1|m} f(d_1) \sum_{d_2|n} f(d_2)
\]
\[
= F(m)F(n).
\]

Thus \(F \) is multiplicative.
(ii) If the function

\[
M : \mathbb{N} \rightarrow \mathbb{Z}
\]

is defined by \(M(n) = \sum_{d|n} \mu(d) \)

then show that

\[
M(n) = \begin{cases}
1 & \text{if } n = 1 \\
0 & \text{otherwise.}
\end{cases}
\]

Consider

\[
M(n) = \sum_{d|n} \mu(d).
\]

As \(\mu(n) \) is multiplicative both sides are multiplicative. If \(n = p^e \) is a power of a prime then

\[
M(p^e) = \mu(1) + \mu(p) + \mu(p^2) + \cdots = 1 - 1 + 0 + \cdots + 0 = 0.
\]

Thus \(M(n) = 0 \) unless \(n = 1 \) in which case \(M(1) = 1 \).

(iii) Show that

\[
f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right).
\]

We have

\[
\sum_{d|n} \mu(d) F\left(\frac{n}{d}\right) = \sum_{d_1 d_2 = n} \mu(d_1) F(d_2)
\]

\[
= \sum_{d_1 d_2 = n} \mu(d_1) \sum_{d|d_2} f(d)
\]

\[
= \sum_{d_1|d|n} \mu(d_1) f(d)
\]

\[
= \sum_{d|n} f(d) \sum_{d_1|n/d} \mu(d_1)
\]

\[
= \sum_{d|n} f(d) M(n/d)
\]

\[
= f(n).
\]
4. (10pts) Show that
\[\pi(n) \geq \frac{\log n}{2 \log 2}. \]

Let \(r = \pi(n) \) and let \(p_1, p_2, \ldots, p_r \) be the first \(r \) primes, so that \(p_1, p_2, \ldots, p_r \) are the primes up to \(n \). Note that we may form \(2^r \) distinct square-free natural numbers \(m \) which are only divisible by \(p_1, p_2, \ldots, p_r \). For each prime \(p_i \) we either choose \(m \) coprime to \(p_i \) or divisible by \(p_i \).

On other hand there are at most \(\sqrt{n} \) perfect squares up \(n \).

Now any natural number \(l \) is the product of a perfect square and a square-free number \(m \). If \(l \leq n \) then \(m \leq n \) and so \(m \) is divisible by \(p_1, p_2, \ldots, p_r \). Thus there are at most \(2^r \sqrt{n} \) numbers up to \(n \). On the other hand there are \(n \) natural numbers up to \(n \).

Thus
\[2^{\pi(n)} \sqrt{n} \geq n \]

so that
\[2^{\pi(n)} \geq \sqrt{n}. \]

Taking logs we see that
\[
\begin{align*}
\pi(n) \log 2 &= \log 2^{\pi(n)} \\
&\geq \log \sqrt{n} \\
&= \frac{1}{2} \log n.
\end{align*}
\]

Thus
\[\pi(n) \geq \frac{\log n}{2 \log 2}. \]
5. Show that
\[\sum_{i<j=1}^{\infty} \frac{x}{p_i p_j} = x \sum_{p_i p_j \leq x, p_i < p_j} \frac{1}{p_i p_j} + O(x). \]

Note that
\[\sum_{i,j=1; p_i < p_j}^{\infty} \frac{x}{p_i p_j} = \sum_{p_i p_j \leq x, p_i < p_j} \frac{x}{p_i p_j} \]
\[\leq \sum_{p_i p_j \leq x, p_i < p_j} \frac{x}{p_i p_j} - E, \]
where
\[E \leq \sum_{p_i p_j \leq x, p_i < p_j} 1. \]

The term on the RHS is the number of ways to pick two primes \(p_i, p_j \) such that \(p_i < p_j \) and \(p_i p_j \leq x \). Let \(y = p_i p_j \). Then \(y \) determines \(p_i \) and \(p_j \) by unique factorisation and \(y \) is a natural number between 1 and \(x \) so that \(y \leq \ll x \rr \leq x \).

Thus \(E \) is at most \(x \) and so \(-E = O(1)\).
Bonus Challenge Problems

6. (10pts) Show that there is a constant γ such that

$$\sum_{k=1}^{n} \frac{1}{k} = \log n + \gamma + O\left(\frac{1}{n}\right).$$

Let

$$\alpha_k = \log k - \log(k-1) - \frac{1}{k}$$

and

$$\gamma_n = \sum_{k=1}^{n} \frac{1}{k} - \log n.$$

Note that

$$1 - \gamma_n = \sum_{k=2}^{n} \alpha_k.$$

Note also that

$$\int_{k-1}^{k} \frac{1}{x} \, dx = [\log x]_{k-1}^{k}$$

$$= \log k - \log(k-1)$$

is the area under the curve $y = 1/x$ over the interval $k - 1 \leq x \leq k$. On the other hand $1/k$ is the area over the interval $k - 1 \leq x \leq k$ inside the largest rectangle inscribed between the x-axis and the curve $y = 1/x$.

It follows that α_k is the difference between these two areas, so that α_k is positive. Note that if we drop these areas down to the region between $x = 0$ and $x = 1$ then all of these areas fit into the unit square bounded by $y = 0$ and $y = 1$.

Thus $0 < 1 - \gamma_n < 1$ is bounded and monotonic increasing. It follows that $1 - \gamma_n$ tends to a limit. Define γ by the formula:

$$\lim_{n \to \infty} (1 - \gamma_n) = 1 - \gamma.$$

Finally note that the difference

$$\gamma_n - \gamma = (1 - \gamma) - (1 - \gamma_n)$$

$$= \sum_{k=n+1}^{\infty} \alpha_k$$

is represented by an area which fits inside a box with one side 1 and the other side $1/n$, so that it is less than $1/n$. Thus

$$\gamma_n - \gamma = O\left(\frac{1}{n}\right).$$
7. (10pts) Show that

\[\pi(x) = O\left(\frac{x}{\log \log x}\right). \]

The number of integers up to \(x \) not divisible by the first \(r \) primes \(p_1, p_2, \ldots, p_r \) is

\[A(x, r) = \lfloor x \rfloor - \sum_{i=1}^{r} \frac{x}{p_i} + \sum_{i \neq j \leq r} \frac{x}{p_ip_j} + \cdots + (-1)^r \lfloor \frac{x}{p_1p_2 \ldots p_r} \rfloor. \]

by inclusion-exclusion. If we approximate this by ignoring the round downs the error is at most

\[1 + \binom{r}{1} + \binom{r}{2} + \cdots + \binom{r}{r} = 2^r, \]

and so

\[\pi(x) \leq r + x \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right) + 2^r. \]

Now

\[\prod_{p \leq x} \frac{1}{1 - \frac{1}{p}} = \prod_{p \leq x} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots\right). \]

If we expand the RHS we get the sum of the reciprocals of all numbers divisible by \(p_1, p_2, \ldots, p_r \), which is at least

\[\sum_{k \leq n} \frac{1}{k} > \log n. \]

Thus

\[\pi(x) \leq r + \frac{x}{\log x} + 2^r. \]

If we take \(r = \lceil \log x \rceil \) then

\[\pi(x) \leq 2^{\log x + 2} + \frac{x}{\log \log x} \quad \text{take } r = \lceil \log x \rceil \]

\[= O\left(2^{\log x}\right) + \frac{x}{\log \log x} \]

\[\leq o\left(\frac{x}{\log \log x}\right) + \frac{x}{\log \log x} \quad \text{as } \log 2 < 1 \]

\[= O\left(\frac{x}{\log \log x}\right). \]