FIRST MIDTERM MATH 104B, UCSD, WINTER 18

You have 80 minutes.

There are 4 problems, and the total number of points is 70 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad
Student ID \#: \qquad

Problem	Points	Score
1	15	
2	15	
3	30	
4	10	
5	10	
6	10	
Total	70	

1. (15pts) (i) Give the definition of $\pi(x)$.

The number of primes up to x.
(ii) Give the definition of the Möbius function.

The function $\mu: \mathbb{N} \longrightarrow \mathbb{N}$ defined by the rule

$$
\mu(n)= \begin{cases}(-1)^{\nu} & \text { if } n \text { is the product of } \nu \text { distinct primes } \\ 0 & \text { otherwise } .\end{cases}
$$

(iii) Give the definition of the fractional part.

If x is real number and $\llcorner x\lrcorner$ is the largest integer less than x then the fractional part is

$$
\{x\}=x-\llcorner x\lrcorner
$$

2. (15pts) Let x, x_{1} and x_{2} be real numbers and let n be an integer. Prove that
(i) $\llcorner x+n\lrcorner=\llcorner x\lrcorner+n$.

As $\llcorner x\lrcorner \leq x$ it follows that $\llcorner x\lrcorner+n \leq\llcorner x+n\lrcorner$. As $\llcorner x+n\lrcorner \leq x+n$ it follows that $\llcorner x+n\lrcorner-n \leq x$. As the LHS is an integer it follows that $\llcorner x+n\lrcorner-n \leq\llcorner x\lrcorner$. Adding n to both sides we get $\llcorner x+n\lrcorner \leq$ $\llcorner x\lrcorner+n$. As we have an inequality both ways we must have an equality $\llcorner x+n\lrcorner=\llcorner x\lrcorner+n$. .
(ii) $\left\llcorner x_{1}\right\lrcorner+\left\llcorner x_{2}\right\lrcorner \leq\left\llcorner x_{1}+x_{2}\right\lrcorner$.

Since

$$
\left\llcorner x_{i}\right\lrcorner \leq x_{i} \quad \text { for } i=1,2 \text { we have } \quad\left\llcorner x_{1}\right\lrcorner+\left\llcorner x_{2}\right\lrcorner \leq x_{1}+x_{2} .
$$

As the LHS is an integer it follows that $\left\llcorner x_{1}\right\lrcorner+\left\llcorner x_{2}\right\lrcorner \leq\left\llcorner x_{1}+x_{2}\right\lrcorner$.
(iii) Assuming that n is a natural number, prove that

$$
\left\llcorner\frac{x}{n}\right\lrcorner=\left\llcorner\frac{\llcorner x\lrcorner}{n}\right\lrcorner .
$$

As

$$
\llcorner x\lrcorner \leq x \quad \text { it follows that } \quad \frac{\llcorner x\lrcorner}{n} \leq \frac{x}{n} .
$$

But then

$$
\left\llcorner\frac{\llcorner x\lrcorner}{n}\right\lrcorner \leq \frac{x}{n} \quad \text { so that } \quad\left\llcorner\frac{\llcorner x\lrcorner}{n}\right\lrcorner \leq\left\llcorner\frac{x}{n}\right\lrcorner,
$$

as the LHS is an integer.
On the other hand, as

$$
\left\llcorner\frac{x}{n}\right\lrcorner \leq \frac{x}{n} \quad \text { it follows that } \quad n\left\llcorner\frac{x}{n}\right\lrcorner \leq x .
$$

so that

$$
\left\llcorner\frac{x}{n}\right\lrcorner \leq \frac{\llcorner x\lrcorner}{n} \quad \text { and so } \quad\left\llcorner\frac{x}{n}\right\lrcorner \leq\left\llcorner\frac{\llcorner x\lrcorner}{n}\right\lrcorner .
$$

As we have an inequality both ways, we have equality.
3. (30pts) Let $f: \mathbb{N} \longrightarrow \mathbb{C}$ be a function and define $F: \mathbb{N} \longrightarrow \mathbb{C}$ by the rule

$$
F(n)=\sum_{d \mid n} f(d) .
$$

(i) Show that if f is multiplicative then F is multiplicative.

Suppose that m and n are coprime. Note that if d divides $m n$ then $d=d_{1} d_{2}$ where d_{1} divides m and d_{2} divides n. We have

$$
\begin{aligned}
& F(m n)=\sum_{d \mid m n} f(d) \\
&=\sum_{d_{1}\left|m, d_{2}\right| n} f\left(d_{1} d_{2}\right) \\
&=\sum_{d_{1} \mid m} \sum_{d_{2} \mid n f\left(d_{1}\right) f\left(d_{2}\right)} \\
&=\sum_{d_{1} \mid m} f\left(d_{1}\right) \sum_{d_{2} \mid n} f\left(d_{2}\right) \\
&=F(m) F(n) .
\end{aligned}
$$

Thus F is multiplicative.
(ii) If the function

$$
M: \mathbb{N} \longrightarrow \mathbb{Z} \quad \text { is defined by } \quad M(n)=\sum_{d \mid n} \mu(d)
$$

then show that

$$
M(n)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

Consider

$$
M(n)=\sum_{d \mid n} \mu(d)
$$

As $\mu(n)$ is multiplicative both sides are multiplicative. If $n=p^{e}$ is a power of a prime then

$$
M\left(p^{e}\right)=\mu(1)+\mu(p)+\mu\left(p^{2}\right)+\cdots=1-1+0+\cdots+0=0
$$

Thus $M(n)=0$ unless $n=1$ in which case $M(1)=1$.
(iii) Show that

$$
f(n)=\sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right)
$$

We have

$$
\begin{aligned}
\sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right) & =\sum_{d_{1} d_{2}=n} \mu\left(d_{1}\right) F\left(d_{2}\right) \\
& =\sum_{d_{1} d_{2}=n} \mu\left(d_{1}\right) \sum_{d \mid d_{2}} f(d) \\
& =\sum_{d_{1} d \mid n} \mu\left(d_{1}\right) f(d) \\
& =\sum_{d \mid n} f(d) \sum_{d_{1} \mid n / d} \mu\left(d_{1}\right) \\
& =\sum_{d \mid n} f(d) M(n / d) \\
& =f(n)
\end{aligned}
$$

4. (10pts) Show that

$$
\pi(n) \geq \frac{\log n}{2 \log 2}
$$

Let $r=\pi(n)$ and let $p_{1}, p_{2}, \ldots, p_{r}$ be the first r primes, so that $p_{1}, p_{2}, \ldots, p_{r}$ are the primes up to n. Note that we may form 2^{r} distinct square-free natural numbers m which are only divisible by $p_{1}, p_{2}, \ldots, p_{r}$. For each prime p_{i} we either choose m coprime to p_{i} or divisible by p_{i}. On other hand there are at most \sqrt{n} perfect squares up n.
Now any natural number l is the product of a perfect square and a square-free number m. If $l \leq n$ then $m \leq n$ and so m is divisible by $p_{1}, p_{2}, \ldots, p_{r}$. Thus there are at most $2^{r} \sqrt{n}$ numbers up to n. On the other hand there are n natural numbers up to n.
Thus

$$
2^{\pi(n)} \sqrt{n} \geq n \quad \text { so that } \quad 2^{\pi(n)} \geq \sqrt{n} .
$$

Taking logs we see that

$$
\begin{aligned}
\pi(n) \log 2 & =\log 2^{\pi(n)} \\
& \geq \log \sqrt{n} \\
& =\frac{1}{2} \log n .
\end{aligned}
$$

Thus

$$
\pi(n) \geq \frac{\log n}{2 \log 2}
$$

5. Show that

$$
\sum_{i<j=1}^{\infty}\left\llcorner\frac{x}{p_{i} p_{j}}\right\lrcorner=x \sum_{p_{i} p_{j} \leq x, p_{i}<p_{j}} \frac{1}{p_{i} p_{j}}+O(x)
$$

Note that

$$
\begin{aligned}
\sum_{i, j=1: p_{i}<p_{j}}^{\infty}\left\llcorner\frac{x}{p_{i} p_{j}}\right\lrcorner & =\sum_{p_{i} p_{j} \leq x, p_{i}<p_{j}}\left\llcorner\frac{x}{p_{i} p_{j}}\right\lrcorner \\
& \leq \sum_{p_{i} p_{j} \leq x, p_{i}<p_{j}} \frac{x}{p_{i} p_{j}}-E,
\end{aligned}
$$

where

$$
E \leq \sum_{p_{i} p_{j} \leq x, p_{i}<p_{j}} 1
$$

The term on the RHS is the number of ways to pick two primes p_{i}, p_{j} such that $p_{i}<p_{j}$ and $p_{i} p_{j} \leq x$. Let $y=p_{i} p_{j}$. Then y determines p_{i} and p_{j} by unique factorisation and y is a natural number between 1 and x so that $y \leq\llcorner x\lrcorner \leq x$.
Thus E is at most x and so $-E=O(1)$.

Bonus Challenge Problems

6. (10pts) Show that there is a constant γ such that

$$
\sum_{k=1}^{n} \frac{1}{k}=\log n+\gamma+O\left(\frac{1}{n}\right)
$$

Let

$$
\alpha_{k}=\log k-\log (k-1)-\frac{1}{k} \quad \text { and } \quad \gamma_{n}=\sum_{k=1}^{n} \frac{1}{k}-\log n .
$$

Note that

$$
1-\gamma_{n}=\sum_{k=2}^{n} \alpha_{k} .
$$

Note also that

$$
\begin{aligned}
\int_{k-1}^{k} \frac{1}{x} \mathrm{~d} x & =[\log x]_{k-1}^{k} \\
& =\log k-\log (k-1)
\end{aligned}
$$

is the area under the curve $y=1 / x$ over the interval $k-1 \leq x \leq k$. On the other hand $1 / k$ is the area over the interval $k-1 \leq x \leq k$ inside the largest rectangle inscribed between the x-axis and the curve $y=1 / x$.
It follows that α_{k} is the difference between these two areas, so that α_{k} is positive. Note that if we drop these areas down to the region between $x=0$ and $x=1$ then all of these areas fit into the unit square bounded by $y=0$ and $y=1$.
Thus $0<1-\gamma_{n}<1$ is bounded and monotonic increasing. It follows that $1-\gamma_{n}$ tends to a limit. Define γ by the formula:

$$
\lim _{n \rightarrow \infty}\left(1-\gamma_{n}\right)=1-\gamma
$$

Finally note that the difference

$$
\begin{aligned}
\gamma_{n}-\gamma & =(1-\gamma)-\left(1-\gamma_{n}\right) \\
& =\sum_{k=n+1}^{\infty} \alpha_{k}
\end{aligned}
$$

is represented by an area which fits inside a box with one side 1 and the other side $1 / n$, so that it is less than $1 / n$. Thus

$$
\gamma_{n}-\gamma=O\left(\frac{1}{n}\right)
$$

7. (10pts) Show that

$$
\pi(x)=O\left(\frac{x}{\log \log x}\right)
$$

The number of integers up to x not divisible by the first r primes $p_{1}, p_{2}, \ldots, p_{r}$ is

$$
A(x, r)=\llcorner x\lrcorner-\sum_{i=1}^{r}\left\llcorner\frac{x}{p_{i}}\right\lrcorner+\sum_{i \neq j \leq r}\left\llcorner\frac{x}{p_{i} p_{j}}\right\lrcorner+\cdots+(-1)^{r}\left\llcorner\frac{x}{p_{1} p_{2} \ldots p_{r}}\right\lrcorner
$$

by inclusion-exclusion. If we approximate this by ignoring the round downs the error is at most

$$
1+\binom{r}{1}+\binom{r}{2}+\cdots+\binom{r}{r}=2^{r}
$$

and so

$$
\pi(x) \leq r+x \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)+2^{r}
$$

Now

$$
\prod_{p \leq x} \frac{1}{1-\frac{1}{p}}=\prod_{p \leq x}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\ldots\right)
$$

If we expand the RHS we get the sum of the reciprocals of all numbers divisible by $p_{1}, p_{2}, \ldots, p_{r}$, which is at least

$$
\sum_{k \leq n} \frac{1}{k}>\log n
$$

Thus

$$
\pi(x) \leq r+\frac{x}{\log x}+2^{r}
$$

If we take $r=\ulcorner\log x\urcorner$ then

$$
\begin{aligned}
\pi(x) & \leq 2^{\log x+2}+\frac{x}{\log \log x} \quad \text { take } r=\ulcorner\log x\urcorner \\
& =O\left(2^{\log x}\right)+\frac{x}{\log \log x} \\
& \leq o\left(\frac{x}{\log \log x}\right)+\frac{x}{\log \log x} \quad \text { as } \log 2<1 \\
& =O\left(\frac{x}{\log \log x}\right)
\end{aligned}
$$

