FIRST MIDTERM MATH 104B, UCSD, WINTER 18

You have 80 minutes.

There are 4 problems, and the total number of points is 70. Show all your work. *Please make* your work as clear and easy to follow as possible.

Name:_____

Signature:_____

Student ID #:_____

Problem	Points	Score
1	15	
2	15	
3	30	
4	10	
5	10	
6	10	
Total	70	

1. (15pts) (i) Give the definition of $\pi(x)$.

The number of primes up to x.

(ii) Give the definition of the Möbius function.

The function $\mu \colon \mathbb{N} \longrightarrow \mathbb{N}$ defined by the rule

 $\mu(n) = \begin{cases} (-1)^{\nu} & \text{if } n \text{ is the product of } \nu \text{ distinct primes} \\ 0 & \text{otherwise.} \end{cases}$

(iii) Give the definition of the fractional part.

If x is real number and $\llcorner x \lrcorner$ is the largest integer less than x then the fractional part is

$$\{x\} = x - \llcorner x \lrcorner$$

2. (15pts) Let x, x_1 and x_2 be real numbers and let n be an integer. Prove that (i) $\lfloor x + n \rfloor = \lfloor x \rfloor + n$.

As $\lfloor x \rfloor \leq x$ it follows that $\lfloor x \rfloor + n \leq \lfloor x + n \rfloor$. As $\lfloor x + n \rfloor \leq x + n$ it follows that $\lfloor x + n \rfloor - n \leq x$. As the LHS is an integer it follows that $\lfloor x + n \rfloor - n \leq \lfloor x \rfloor$. Adding *n* to both sides we get $\lfloor x + n \rfloor \leq \lfloor x \rfloor + n$. As we have an inequality both ways we must have an equality $\lfloor x + n \rfloor = \lfloor x \rfloor + n$.

(ii)
$$\lfloor x_1 \rfloor + \lfloor x_2 \rfloor \leq \lfloor x_1 + x_2 \rfloor$$
.

Since

(iii) Assuming that n is a natural number, prove that

$$\lfloor \frac{x}{n} \rfloor = \lfloor \frac{\lfloor x \rfloor}{n} \rfloor$$

1	۱.	
ŀ	ł	s
-	_	

But then

$$\lfloor \frac{\lfloor x \rfloor}{n} \rfloor \leq \frac{x}{n} \quad \text{so that} \quad \lfloor \frac{\lfloor x \rfloor}{n} \rfloor \leq \lfloor \frac{x}{n} \rfloor,$$

as the LHS is an integer. On the other hand, as

$$\lfloor \frac{x}{n} \rfloor \leq \frac{x}{n}$$
 it follows that $n \lfloor \frac{x}{n} \rfloor \leq x$.

so that

$$\lfloor \frac{x}{n} \rfloor \leq \frac{\lfloor x \rfloor}{n} \quad \text{and so} \quad \lfloor \frac{x}{n} \rfloor \leq \lfloor \frac{\lfloor x \rfloor}{n} \rfloor$$

As we have an inequality both ways, we have equality.

3. (30pts) Let $f: \mathbb{N} \longrightarrow \mathbb{C}$ be a function and define $F: \mathbb{N} \longrightarrow \mathbb{C}$ by the rule

$$F(n) = \sum_{d|n} f(d).$$

(i) Show that if f is multiplicative then F is multiplicative.

Suppose that m and n are coprime. Note that if d divides mn then $d = d_1d_2$ where d_1 divides m and d_2 divides n. We have

$$F(mn) = \sum_{d|mn} f(d)$$

= $\sum_{d_1|m,d_2|n} f(d_1d_2)$
= $\sum_{d_1|m} \sum_{d_2|n} f(d_1)f(d_2)$
= $\sum_{d_1|m} f(d_1) \sum_{d_2|n} f(d_2)$
= $F(m)F(n).$

Thus F is multiplicative.

(ii) If the function

$$M \colon \mathbb{N} \longrightarrow \mathbb{Z}$$
 is defined by $M(n) = \sum_{d|n} \mu(d)$

then show that

$$M(n) = \begin{cases} 1 & \text{if } n = 1\\ 0 & \text{otherwise.} \end{cases}$$

Consider

$$M(n) = \sum_{d|n} \mu(d).$$

As $\mu(n)$ is multiplicative both sides are multiplicative. If $n=p^e$ is a power of a prime then

$$M(p^e) = \mu(1) + \mu(p) + \mu(p^2) + \dots = 1 - 1 + 0 + \dots + 0 = 0.$$

Thus M(n) = 0 unless n = 1 in which case M(1) = 1.

(iii) Show that

$$f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d}).$$

We have

$$\sum_{d|n} \mu(d) F(\frac{n}{d}) = \sum_{d_1 d_2 = n} \mu(d_1) F(d_2)$$
$$= \sum_{d_1 d_2 = n} \mu(d_1) \sum_{d|d_2} f(d)$$
$$= \sum_{d_1 d|n} \mu(d_1) f(d)$$
$$= \sum_{d|n} f(d) \sum_{d_1|n/d} \mu(d_1)$$
$$= \sum_{d|n} f(d) M(n/d)$$
$$= f(n).$$

4. (10pts) Show that

$$\pi(n) \ge \frac{\log n}{2\log 2}.$$

Let $r = \pi(n)$ and let p_1, p_2, \ldots, p_r be the first r primes, so that p_1, p_2, \ldots, p_r are the primes up to n. Note that we may form 2^r distinct square-free natural numbers m which are only divisible by p_1, p_2, \ldots, p_r . For each prime p_i we either choose m coprime to p_i or divisible by p_i . On other hand there are at most \sqrt{n} perfect squares up n.

Now any natural number l is the product of a perfect square and a square-free number m. If $l \leq n$ then $m \leq n$ and so m is divisible by p_1, p_2, \ldots, p_r . Thus there are at most $2^r \sqrt{n}$ numbers up to n. On the other hand there are n natural numbers up to n. Thus

$$2^{\pi(n)}\sqrt{n} \ge n$$
 so that $2^{\pi(n)} \ge \sqrt{n}$.

Taking logs we see that

$$\pi(n) \log 2 = \log 2^{\pi(n)}$$
$$\geq \log \sqrt{n}$$
$$= \frac{1}{2} \log n.$$

Thus

$$\pi(n) \ge \frac{\log n}{2\log 2}.$$

5. Show that

$$\sum_{i< j=1}^{\infty} \lfloor \frac{x}{p_i p_j} \rfloor = x \sum_{p_i p_j \le x, p_i < p_j} \frac{1}{p_i p_j} + O(x).$$

Note that

$$\sum_{i,j=1:p_i < p_j}^{\infty} \lfloor \frac{x}{p_i p_j} \rfloor = \sum_{\substack{p_i p_j \le x, p_i < p_j}} \lfloor \frac{x}{p_i p_j} \rfloor$$
$$\leq \sum_{\substack{p_i p_j \le x, p_i < p_j}} \frac{x}{p_i p_j} - E,$$

where

$$E \le \sum_{p_i p_j \le x, p_i < p_j} 1.$$

The term on the RHS is the number of ways to pick two primes p_i , p_j such that $p_i < p_j$ and $p_i p_j \leq x$. Let $y = p_i p_j$. Then y determines p_i and p_j by unique factorisation and y is a natural number between 1 and x so that $y \leq \lfloor x \rfloor \leq x$.

Thus E is at most x and so -E = O(1).

Bonus Challenge Problems

6. (10pts) Show that there is a constant γ such that

$$\sum_{k=1}^{n} \frac{1}{k} = \log n + \gamma + O\left(\frac{1}{n}\right).$$

Let

$$\alpha_k = \log k - \log(k-1) - \frac{1}{k}$$
 and $\gamma_n = \sum_{k=1}^n \frac{1}{k} - \log n.$

Note that

$$1 - \gamma_n = \sum_{k=2}^n \alpha_k.$$

Note also that

$$\int_{k-1}^{k} \frac{1}{x} dx = [\log x]_{k-1}^{k}$$
$$= \log k - \log(k-1)$$

is the area under the curve y = 1/x over the interval $k - 1 \le x \le k$. On the other hand 1/k is the area over the interval $k - 1 \le x \le k$ inside the largest rectangle inscribed between the x-axis and the curve y = 1/x.

It follows that α_k is the difference between these two areas, so that α_k is positive. Note that if we drop these areas down to the region between x = 0 and x = 1 then all of these areas fit into the unit square bounded by y = 0 and y = 1.

Thus $0 < 1 - \gamma_n < 1$ is bounded and monotonic increasing. It follows that $1 - \gamma_n$ tends to a limit. Define γ by the formula:

$$\lim_{n \to \infty} (1 - \gamma_n) = 1 - \gamma.$$

Finally note that the difference

$$\gamma_n - \gamma = (1 - \gamma) - (1 - \gamma_n)$$
$$= \sum_{k=n+1}^{\infty} \alpha_k$$

is represented by an area which fits inside a box with one side 1 and the other side 1/n, so that it is less than 1/n. Thus

$$\gamma_n - \gamma = O\left(\frac{1}{n}\right).$$

7. (10pts) Show that

$$\pi(x) = O\left(\frac{x}{\log\log x}\right).$$

The number of integers up to x not divisible by the first r primes p_1, p_2, \ldots, p_r is

$$A(x,r) = \lfloor x \rfloor - \sum_{i=1}^{r} \lfloor \frac{x}{p_i} \rfloor + \sum_{i \neq j \leq r} \lfloor \frac{x}{p_i p_j} \rfloor + \dots + (-1)^r \lfloor \frac{x}{p_1 p_2 \dots p_r} \rfloor.$$

by inclusion-exclusion. If we approximate this by ignoring the round downs the error is at most

$$1 + \binom{r}{1} + \binom{r}{2} + \dots + \binom{r}{r} = 2^r,$$

and so

$$\pi(x) \le r + x \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right) + 2^r.$$

Now

$$\prod_{p \le x} \frac{1}{1 - \frac{1}{p}} = \prod_{p \le x} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots \right).$$

If we expand the RHS we get the sum of the reciprocals of all numbers divisible by p_1, p_2, \ldots, p_r , which is at least

$$\sum_{k \le n} \frac{1}{k} > \log n.$$

Thus

$$\pi(x) \le r + \frac{x}{\log x} + 2^r.$$

If we take $r = \lceil \log x \rceil$ then

$$\pi(x) \le 2^{\log x+2} + \frac{x}{\log \log x} \quad \text{take } r = \lceil \log x \rceil$$
$$= O\left(2^{\log x}\right) + \frac{x}{\log \log x}$$
$$\le o\left(\frac{x}{\log \log x}\right) + \frac{x}{\log \log x} \quad \text{as } \log 2 < 1$$
$$= O\left(\frac{x}{\log \log x}\right).$$