
FIRST MIDTERM

MATH 104B, UCSD, WINTER 18

You have 80 minutes.

There are 4 problems, and the total number of

points is 70. Show all your work. Please make

your work as clear and easy to follow as possible.

Name:

Signature:

Student ID #:

Problem Points Score

1 15

2 15

3 30

4 10

5 10

6 10

Total 70
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1. (15pts) (i) Give the definition of π(x).

The number of primes up to x.

(ii) Give the definition of the Möbius function.

The function µ : N −→ N defined by the rule

µ(n) =

{

(−1)ν if n is the product of ν distinct primes

0 otherwise.

(iii) Give the definition of the fractional part.

If x is real number and xxy is the largest integer less than x then the
fractional part is

{x } = x− xxy
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2. (15pts) Let x, x1 and x2 be real numbers and let n be an integer.

Prove that

(i) xx+ ny = xxy+ n.

As xxy ≤ x it follows that xxy + n ≤ xx + ny. As xx + ny ≤ x + n
it follows that xx + ny − n ≤ x. As the LHS is an integer it follows
that xx + ny − n ≤ xxy. Adding n to both sides we get xx + ny ≤
xxy+n. As we have an inequality both ways we must have an equality
xx+ ny = xxy+ n..

(ii) xx1y+ xx2y ≤ xx1 + x2y.

Since

xxiy ≤ xi for i = 1, 2 we have xx1y+ xx2y ≤ x1 + x2.

As the LHS is an integer it follows that xx1y+ xx2y ≤ xx1 + x2y.

(iii) Assuming that n is a natural number, prove that

x
x

n
y = x

xxy

n
y.

As
xxy ≤ x it follows that

xxy

n
≤ x

n
.

But then
x
xxy

n
y ≤ x

n
so that x

xxy

n
y ≤ x

x

n
y,

as the LHS is an integer.
On the other hand, as

x
x

n
y ≤ x

n
it follows that nx

x

n
y ≤ x.

so that
x
x

n
y ≤ xxy

n
and so x

x

n
y ≤ x

xxy

n
y.

As we have an inequality both ways, we have equality.
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3. (30pts) Let f : N −→ C be a function and define F : N −→ C by the

rule

F (n) =
∑

d|n

f(d).

(i) Show that if f is multiplicative then F is multiplicative.

Suppose that m and n are coprime. Note that if d divides mn then
d = d1d2 where d1 divides m and d2 divides n. We have

F (mn) =
∑

d|mn

f(d)

=
∑

d1|m,d2|n

f(d1d2)

=
∑

d1|m

∑

d2|nf(d1)f(d2)

=
∑

d1|m

f(d1)
∑

d2|n

f(d2)

= F (m)F (n).

Thus F is multiplicative.
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(ii) If the function

M : N −→ Z is defined by M(n) =
∑

d|n

µ(d)

then show that

M(n) =

{

1 if n = 1

0 otherwise.

Consider
M(n) =

∑

d|n

µ(d).

As µ(n) is multiplicative both sides are multiplicative. If n = pe is a
power of a prime then

M(pe) = µ(1) + µ(p) + µ(p2) + · · · = 1− 1 + 0 + · · ·+ 0 = 0.

Thus M(n) = 0 unless n = 1 in which case M(1) = 1.

(iii) Show that

f(n) =
∑

d|n

µ(d)F (
n

d
).

We have
∑

d|n

µ(d)F (
n

d
) =

∑

d1d2=n

µ(d1)F (d2)

=
∑

d1d2=n

µ(d1)
∑

d|d2

f(d)

=
∑

d1d|n

µ(d1)f(d)

=
∑

d|n

f(d)
∑

d1|n/d

µ(d1)

=
∑

d|n

f(d)M(n/d)

= f(n).
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4. (10pts) Show that

π(n) ≥ log n

2 log 2
.

Let r = π(n) and let p1, p2, . . . , pr be the first r primes, so that
p1, p2, . . . , pr are the primes up to n. Note that we may form 2r distinct
square-free natural numbersm which are only divisible by p1, p2, . . . , pr.
For each prime pi we either choose m coprime to pi or divisible by pi.
On other hand there are at most

√
n perfect squares up n.

Now any natural number l is the product of a perfect square and a
square-free number m. If l ≤ n then m ≤ n and so m is divisible by
p1, p2, . . . , pr. Thus there are at most 2r

√
n numbers up to n. On the

other hand there are n natural numbers up to n.
Thus

2π(n)
√
n ≥ n so that 2π(n) ≥

√
n.

Taking logs we see that

π(n) log 2 = log 2π(n)

≥ log
√
n

=
1

2
log n.

Thus

π(n) ≥ log n

2 log 2
.
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5. Show that
∞
∑

i<j=1

x
x

pipj
y = x

∑

pipj≤x,pi<pj

1

pipj
+O(x).

Note that
∞
∑

i,j=1:pi<pj

x
x

pipj
y =

∑

pipj≤x,pi<pj

x
x

pipj
y

≤
∑

pipj≤x,pi<pj

x

pipj
− E,

where
E ≤

∑

pipj≤x,pi<pj

1.

The term on the RHS is the number of ways to pick two primes pi, pj
such that pi < pj and pipj ≤ x. Let y = pipj. Then y determines pi
and pj by unique factorisation and y is a natural number between 1
and x so that y ≤ xxy ≤ x.
Thus E is at most x and so −E = O(1).
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Bonus Challenge Problems

6. (10pts) Show that there is a constant γ such that
n

∑

k=1

1

k
= log n+ γ +O

(

1

n

)

.

Let

αk = log k − log(k − 1)− 1

k
and γn =

n
∑

k=1

1

k
− log n.

Note that

1− γn =
n

∑

k=2

αk.

Note also that
∫ k

k−1

1

x
dx = [log x]kk−1

= log k − log(k − 1)

is the area under the curve y = 1/x over the interval k − 1 ≤ x ≤ k.
On the other hand 1/k is the area over the interval k − 1 ≤ x ≤ k
inside the largest rectangle inscribed between the x-axis and the curve
y = 1/x.
It follows that αk is the difference between these two areas, so that
αk is positive. Note that if we drop these areas down to the region
between x = 0 and x = 1 then all of these areas fit into the unit square
bounded by y = 0 and y = 1.
Thus 0 < 1 − γn < 1 is bounded and monotonic increasing. It follows
that 1− γn tends to a limit. Define γ by the formula:

lim
n→∞

(1− γn) = 1− γ.

Finally note that the difference

γn − γ = (1− γ)− (1− γn)

=
∞
∑

k=n+1

αk

is represented by an area which fits inside a box with one side 1 and
the other side 1/n, so that it is less than 1/n. Thus

γn − γ = O

(

1

n

)

.
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7. (10pts) Show that

π(x) = O

(

x

log log x

)

.

The number of integers up to x not divisible by the first r primes
p1, p2, . . . , pr is

A(x, r) = xxy−
r

∑

i=1

x
x

pi
y+

∑

i 6=j≤r

x
x

pipj
y+ · · ·+ (−1)rx

x

p1p2 . . . pr
y.

by inclusion-exclusion. If we approximate this by ignoring the round
downs the error is at most

1 +

(

r

1

)

+

(

r

2

)

+ · · ·+
(

r

r

)

= 2r,

and so

π(x) ≤ r + x

r
∏

i=1

(

1− 1

pi

)

+ 2r.

Now
∏

p≤x

1

1− 1
p

=
∏

p≤x

(

1 +
1

p
+

1

p2
+ . . .

)

.

If we expand the RHS we get the sum of the reciprocals of all numbers
divisible by p1, p2, . . . , pr, which is at least

∑

k≤n

1

k
> log n.

Thus
π(x) ≤ r +

x

log x
+ 2r.

If we take r = plog xq then

π(x) ≤ 2log x+2 +
x

log log x
take r = plog xq

= O
(

2log x
)

+
x

log log x

≤ o

(

x

log log x

)

+
x

log log x
as log 2 < 1

= O

(

x

log log x

)

.
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