SECOND MIDTERM
MATH 104B, UCSD, WINTER 18

You have 80 minutes.

There are 5 problems, and the total number of points is 70. Show all your work. *Please make your work as clear and easy to follow as possible.*

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Name:______________________________

Signature:_________________________

Student ID #:______________________
1. (15pts) (i) \textit{Give the definition of li}(x).

\[\text{li}(x) = \int_2^x \frac{1}{\log t} \, dt. \]

(ii) \textit{Give the definition of } \vartheta(x).

\[\vartheta(x) = \sum_{p \leq x} \log p. \]

(iii) \textit{Give the definition of the Riemann zeta-function } \zeta(s).

\[\zeta(s) = \sum_k \frac{1}{k^s}. \]
2. (10pts) Show that

\[
\text{li}(x) = \frac{x}{\log x} + \frac{1!x}{\log^2 x} + \frac{2!x}{\log^3 x} + \cdots + \frac{(n-1)!x}{\log^n x} + O\left(\frac{x}{\log^{n+1} x}\right).
\]

Note that if we integrate by parts then we get

\[
\int_0^x \frac{dt}{\log^n t} = \int_0^x \frac{1}{n} \cdot \frac{dt}{\log^n t} = \left[\frac{t}{n \log^n t} \right]_0^x + n \int_0^x \frac{t}{t \log^{n+1} t} dt = \frac{x}{\log^n x} + n \int_0^x \frac{dt}{\log^{n+1} t}.
\]

It follows by induction that

\[
\text{li}(x) = \frac{x}{\log x} + \frac{1!x}{\log^2 x} + \frac{2!x}{\log^3 x} + \cdots + \frac{(n-1)!x}{\log^n x} + n \int_0^x \frac{dt}{\log^{n+1} t}.
\]

Now to estimate the last integral, we break it into three parts.

\[
\int_0^x \frac{dt}{\log^{n+1} t} = \int_0^2 \frac{dt}{\log^{n+1} t} + \int_2^{\sqrt{x}} \frac{dt}{\log^{n+1} t} + \int_{\sqrt{x}}^x \frac{dt}{\log^{n+1} t}.
\]

The first integral is constant. The second is over an interval of length bounded by \(\sqrt{x}\) of a function bounded by a constant \(\frac{1}{\log^{n+1/2}}\) and so the second integral is \(O(\sqrt{x})\). The third integral is over an interval of length bounded by \(x\) of a function which is bounded by

\[
\frac{1}{\log^{n+1} \sqrt{x}} = O \left(\frac{1}{\log^{n+1} x}\right).
\]

Thus the last integral is

\[
O \left(\frac{x}{\log^{n+1} x}\right).
\]

Therefore

\[
\left| n! \int_0^x \frac{dt}{\log^{n+1} t} \right| = O \left(\frac{x}{\log^{n+1} x}\right).
\]

and so the result follows.
3. (15pts) Show that

\[
\pi(x) \leq r + x \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right) + 2^r,
\]

where \(p_1, p_2, \ldots, p_r\) are the first \(r\) primes.

Let

\[P = \{ n \in \mathbb{N} \mid 1 < n \leq x \text{ and } n \text{ is a not a multiple of } p_1, p_2, \ldots, p_r \},\]

so that \(P\) is the set of integers from 2 to \(x\) which are not multiples of \(p_1, p_2, \ldots, p_r\). Let \(A(x, r)\) be the cardinality of \(P\).

If \(p\) is a prime from 1 to \(n\) then either \(p\) is one of \(p_1, p_2, \ldots, p_r\) or \(p\) belongs to \(P\). It follows that

\[
\pi(x) \leq r + A(x, r).
\]

We want to estimate \(A(x, r)\). Let \(M_i\) be the set of integers from 1 to \(n\) which are multiples of \(p_i\). Let \(M_{ij}\) be the set of integers from 1 to \(n\) which are multiples of both \(p_i\) and \(p_j\). As \(p_i\) and \(p_j\) are coprime,

\[M_{ij} = M_i \cap M_j.\]

Note that

\[|M_i| = \lfloor \frac{x}{p_i} \rfloor \quad \text{ and } \quad |M_{ij}| = \lfloor \frac{x}{p_ip_j} \rfloor,\]

and so on. It follows by inclusion-exclusion that

\[A(x, r) = \lfloor x \rfloor - \sum_{i=1}^{r} \lfloor \frac{x}{p_i} \rfloor + \sum_{i < j \leq r} \lfloor \frac{x}{p_ip_j} \rfloor + \cdots + (-1)^r \lfloor \frac{x}{p_1p_2 \cdots p_r} \rfloor.\]

Suppose that we approximate the RHS by simply ignoring all of the round downs,

\[x - \sum_{i=1}^{r} \frac{x}{p_i} + \sum_{i < j \leq r} \frac{x}{p_ip_j} + \cdots + (-1)^r \frac{x}{p_1p_2 \cdots p_r}.\]

The worse case scenario for the error is

\[1 + \binom{r}{1} + \binom{r}{2} + \cdots + \binom{r}{r} = 2^r.\]

It follows that

\[
\pi(x) \leq r + x \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right) + 2^r.
\]
(b) If \(x \geq 2 \) then
\[
\prod_{p \leq x} \left(1 - \frac{1}{p} \right) < \frac{1}{\log x}.
\]

We compute the product of the reciprocals,
\[
\prod_{p \leq x} \frac{1}{1 - \frac{1}{p}} = \prod_{p \leq x} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \ldots \right).
\]
Consider what happens if we expand the RHS. If \(m \) is an integer which is a product of primes less than \(x \) then the term \(\frac{1}{m} \) appears somewhere in the expansion of this product.
Now any integer \(m \leq x \) is a product of primes less than \(x \) and so
\[
\prod_{p \leq x} \frac{1}{1 - \frac{1}{p}} > \sum_{k=1}^{n} \frac{1}{k} > \int_{1}^{\lfloor x \rfloor} \frac{du}{u} > \log x.
\]
\[\pi(x) \leq \frac{x}{\log \log x} . \]

\[\pi(x) \leq r + x \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right) + 2^r \quad \text{as proved above} \]

\[\leq 2^{r+1} + x \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right) \quad \text{as } r \leq 2^r \]

\[\leq 2^{r+1} + \frac{x}{\log p_r} \quad \text{using (b)} \]

\[\leq 2^{r+1} + \frac{x}{\log r} \quad \text{as } p_r \geq r \]

\[\leq 2^{\log x + 2} + \frac{x}{\log \log x} \quad \text{take } r = \lceil \log x \rceil \]

\[\leq 4 \cdot 2^{\log x} + \frac{x}{\log \log x} \]

\[= O \left(2^{\log x} \right) + \frac{x}{\log \log x} \]

\[\leq o \left(\frac{x}{\log \log x} \right) + \frac{x}{\log \log x} \quad \text{as } \log 2 < 1 \]

\[= O \left(\frac{x}{\log \log x} \right) . \]
4. (20pts) Let \(\langle x \rangle = \lfloor x \rfloor + 1/2 \) denote the nearest integer to \(x \).

(i) If \(x \) is a real number then show that
\[
\lfloor x \rfloor = \langle x/2 \rangle + \lfloor x/2 \rfloor.
\]

Suppose that \(\{ x/2 \} < 1/2 \). Then
\[
\langle x/2 \rangle = \lfloor x/2 \rfloor \quad \text{and} \quad \lfloor x \rfloor = 2\lfloor x/2 \rfloor
\]
and so
\[
\lfloor x \rfloor = 2\lfloor x/2 \rfloor
\]
\[
= \lfloor x/2 \rfloor + \langle x/2 \rangle.
\]

Now suppose that \(\{ x/2 \} \geq 1/2 \). Then
\[
\langle x/2 \rangle = \lfloor x/2 \rfloor + 1 \quad \text{and} \quad \lfloor x \rfloor = 2\lfloor x/2 \rfloor + 1
\]
and so
\[
\lfloor x \rfloor = 2\lfloor x/2 \rfloor + 1
\]
\[
= \lfloor x/2 \rfloor + \langle x/2 \rangle.
\]

(ii) Let \(p_1, p_2, \ldots, p_m \) be the first \(m \) odd primes and let \(P(x, m) \) be the number of odd integers at most \(x \) and not divisible by any of these primes.

Show that
\[
P(x, m) = \sum_a \langle x/2a \rangle - \sum_b \langle x/2b \rangle
\]
where \(a \) and \(b \) run over all products of an even and an odd number of primes among \(p_1, p_2, \ldots, p_m \) respectively.

\[
P(x, m) = A(x, m + 1) + 1
\]
\[
= \lfloor x \rfloor - \lfloor x/2 \rfloor - \left(\sum \lfloor x/p_i \rfloor - \sum \lfloor x/2p_i \rfloor \right) + \left(\sum \lfloor x/p_ip_j \rfloor - \sum \lfloor x/2p_ip_j \rfloor \right) + \ldots
\]
\[
= \langle x/2 \rangle - \sum \langle x/p_i \rangle + \sum \langle x/p_ip_j \rangle + \ldots
\]
\[
= \sum_a \langle x/2a \rangle - \sum_b \langle x/2b \rangle.
\]
(iii) Show that
\[\pi(x) = \pi(\sqrt{x}) + P(x, \pi(\sqrt{x}) - 1) - 1. \]

Let \(r = \pi(\sqrt{x}) \). Then
\[\pi(x) = r + A(x, r) \]
\[= \pi(\sqrt{x}) + P(x, \pi(\sqrt{x}) - 1). \]

(iv) Use (iii) to calculate \(\pi(200) \).

Now the odd primes up to 14 are 3, 5, 7, 11 and 13. Thus
\[\pi(\sqrt{200}) = 6. \]

On the other hand, one can compute
\[P(200, 5) = 100 - (33 + 20 + 14 + 9 + 8) + (7 + 5 + 3 + 3 + 2 + 2 + 1 + 1 + 1) - (1 + 1 + 1) = 41. \]

Thus
\[\pi(200) = \pi(14) + P(200, 5) - 1 \]
\[= 6 + 41 - 1 \]
\[= 46. \]
5. (10pts) Derive the prime number theorem from the relation
\[\vartheta(x) \sim x. \]

We have
\[
x \sim \sum_{p \leq x} \log p \\
\leq \sum_{p \leq x} \log x \\
= \log x \sum_{p \leq x} 1 \\
= \pi(x) \log x.
\]

On the other hand
\[
x \sim \sum_{x^{1-\epsilon} \leq p \leq x} \log p \\
\geq \sum_{x^{1-\epsilon} \leq p \leq x} \log x^{1-\epsilon} \\
= (1 - \epsilon) \log x \sum_{x^{1-\epsilon} \leq p \leq x} 1 \\
= (1 - \epsilon) (\pi(x) - \pi(x^{1-\epsilon})) \log x \\
= (1 - \epsilon) (\pi(x) + O(x^{1-\epsilon})) \log x.
\]

Putting these together, we see that
\[\pi(x) \sim \frac{x}{\log x}. \]
Bonus Challenge Problems

6. (10pts) Show that

\[
\int_2^x \frac{\pi(t)}{t^2} \, dt = \sum_{p \leq x} \frac{1}{p} + o(1).
\]

We apply partial summation to

\[
\lambda_n = p_n \quad c_n = 1 \quad \text{and} \quad f(x) = \frac{1}{x}.
\]

We get

\[
\sum_{p \leq x} \frac{1}{p} = \frac{\pi(x)}{x} - \int_2^x \frac{\pi(t)}{t^2} \, dt.
\]

As

\[
\pi(x) = O\left(\frac{x}{\log \log x}\right)
\]

the first expression on the RHS is certainly \(o(1) \). Rearranging we get

\[
\int_2^x \frac{\pi(t)}{t^2} \, dt = \sum_{p \leq x} \frac{1}{p} + o(1).
\]
7. (10pts) Show that there are constants c_1 and c_2 such that

$$c_1 \frac{x}{\log x} < \pi(x) < c_2 \frac{x}{\log x}.$$

See lecture 7.