PRACTICE PROBLEMS FOR THE FIRST MIDTERM

1. Give the definition of:
(i) τ.
(ii) σ.
(iii) $\pi(x)$.
(iv) a multiplicative function.
(v) a perfect number.
(vi) a Mersenne prime.
(vii) The Möbius function.
(viii) the round down.
(ix) the fractional part.
(x) $f(x)=O(g(x))$.
(xi) $f(x)=o(g(x))$.
(xii) $f(x) \sim g(x)$.
(xiii) Euler's constant.
2. Show that if $f: \mathbb{N} \longrightarrow \mathbb{C}$ is a multiplicative function then

$$
F(n)=\sum_{d \mid n} f(d)
$$

is a multiplicative function.
3. Show that if n is an even perfect number then $n=2^{p-1}\left(2^{p}-1\right)$, where $2^{p}-1$ is a Mersenne prime.
4. Show that the number of ordered pairs pairs of natural numbers whose lowest common multiple is n is $\tau\left(n^{2}\right)$.
5. Show that if $d \mid n$ and $(n, r)=1$ then the number of solutions, modulo n, of

$$
x \equiv r \quad \bmod d \quad \text { where } \quad(x, n)=1
$$

is

$$
\frac{\varphi(n)}{\varphi(d)}=\frac{n}{d} \prod_{p \mid n, p \nmid d}\left(1-\frac{1}{p}\right) .
$$

6. Show that if f and F are as in (2) then (a)

$$
f(n)=\sum_{d \mid n} \mu(d) F(n / d)
$$

(b) if F is multiplicative then f is multiplicative.
7. Let $f(x, n)$ be the number of integers less than or equal to x and coprime to n. Prove that
(a)

$$
\sum_{d \mid n} f\left(\frac{x}{d}, \frac{n}{d}\right)=\llcorner x\lrcorner
$$

(b)

$$
f(x, n)=\sum_{d \mid n} \mu(d)\left\llcorner\frac{x}{d}\right\lrcorner .
$$

8. Show that

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right)<\frac{1}{\log x}
$$

