PRACTICE PROBLEMS FOR THE FIRST MIDTERM

1. Give the definition of:
 (i) \(\tau \).
 (ii) \(\sigma \).
 (iii) \(\pi(x) \).
 (iv) a multiplicative function.
 (v) a perfect number.
 (vi) a Mersenne prime.
 (vii) The Möbius function.
 (viii) the round down.
 (ix) the fractional part.
 (x) \(f(x) = O(g(x)) \).
 (xi) \(f(x) = o(g(x)) \).
 (xii) \(f(x) \sim g(x) \).
 (xiii) Euler’s constant.

2. Show that if \(f: \mathbb{N} \rightarrow \mathbb{C} \) is a multiplicative function then
 \[
 F(n) = \sum_{d|n} f(d)
 \]
 is a multiplicative function.

3. Show that if \(n \) is an even perfect number then \(n = 2^{p-1}(2^p - 1) \), where \(2^p - 1 \) is a Mersenne prime.

4. Show that the number of ordered pairs pairs of natural numbers whose lowest common multiple is \(n \) is \(\tau(n^2) \).

5. Show that if \(d|n \) and \((n,r) = 1 \) then the number of solutions, modulo \(n \), of
 \(x \equiv r \mod d \) where \((x,n) = 1 \),
 is
 \[
 \frac{\varphi(n)}{\varphi(d)} = \sum_{d|n} \mu(d)F(n/d).
 \]

6. Show that if \(f \) and \(F \) are as in (2) then (a)
 \[
 f(n) = \sum_{d|n} \mu(d)F(n/d).
 \]
 (b) if \(F \) is multiplicative then \(f \) is multiplicative.

7. Let \(f(x,n) \) be the number of integers less than or equal to \(x \) and coprime to \(n \). Prove that
(a) \[\sum_{d|n} f\left(\frac{x}{d}, \frac{n}{d}\right) = \lfloor x \rfloor \]
(b) \[f(x, n) = \sum_{d|n} \mu(d) \lfloor \frac{x}{d} \rfloor. \]

8. Show that
\[\prod_{\substack{p \leq x}} \left(1 - \frac{1}{p}\right) < \frac{1}{\log x}. \]