## PRACTICE PROBLEMS FOR THE SECOND MIDTERM

1. Give the definition of:
(i) $\ll$ and $\gg$.
(ii) liminf and limsup.
(iii) $\operatorname{li}(x)$.
(iv) The integer nearest to $x$.
(v) $\vartheta(x)$.
(vi) Riemann zeta-function $\zeta(s)$.
(vii) completely multiplicative.
(viii) Dirichlet series.
2. Show that
(a)

$$
\pi(x) \leq r+x \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)+2^{r},
$$

where $p_{1}, p_{2}, \ldots, p_{r}$ are the first $r$ primes.
(b) If $x \geq 2$ then

$$
\prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)<\frac{1}{\log x}
$$

(c)

$$
\pi(x) \ll \frac{x}{\log \log x}
$$

3. Show that

$$
\sum_{p \leq x} p^{-1}>\frac{1}{2} \log \log x
$$

4. Assuming that

$$
\sum_{p \leq x} \frac{\log p}{p}=\log x+O\left(\frac{\log x}{\log \log x}\right)
$$

show that

$$
\sum_{p \leq x} \frac{1}{p} \sim \log \log x .
$$

5. Derive the prime number theorem from the relation

$$
\vartheta(x) \sim x .
$$

6. Show that

$$
\sum(-1)^{k} k^{-s}
$$

converges for $s>0$.
7. Show that

$$
\operatorname{li}(x)=\frac{x}{\log x}+\frac{1!x}{\log ^{2} x}+\frac{2!x}{\log ^{3} x}+\cdots+\frac{(n-1)!x}{\log ^{n} x}+O\left(\frac{x}{\log ^{n+1} x}\right) .
$$

8. Assuming that there are constants $c_{1}$ and $c_{2}$ such that

$$
c_{1} \frac{x}{\log x}<\pi(x)<c_{2} \frac{x}{\log x},
$$

show that there are constants $c_{3}$ and $c_{4}$ such that

$$
c_{3} r \log r<p_{r}<c_{4} r \log r .
$$

