FINAL EXAM

 MATH 110A, UCSD, AUTUMN 18You have three hours.

There are 9 problems, and the total number of points is 105 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad
Student ID \#: \qquad

Problem	Points	Score
1	15	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	20	
9	10	
10	10	
11	10	
12	10	
13	10	
Total	105	

1. (15pts) (i) Give the definition of an odd function.
f is odd if

$$
f(-x)=-f(x)
$$

(ii) Write down the wave equation.

$$
u_{t t}=c^{2} u_{x x} .
$$

(iii) Write down the (general) Fourier sine series for the interval $(0, l)$.

$$
\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{l}
$$

2. (10pts) Which of the following operators are linear?
(a)

$$
\mathscr{L} u=\sqrt{1+x^{2}}(\cos y) u_{x}+u_{y x y}-\tan ^{-1}(x / y) u
$$

This is linear. The general form of a linear operator is a combination of arbitrary order partial derivatives of u with respect to x and y with coefficients which are functions of x and y.
(b)

$$
\mathscr{L} u=u_{x}+u_{y}+1 .
$$

This is not linear.

$$
\begin{aligned}
\mathscr{L} 2 u & =2 u_{x}+2 u_{y}+1 \\
& =2 u_{x}+2 u_{y}+2-1 \\
& =2 \mathscr{L} u-1 \\
& \neq 2 \mathscr{L} u .
\end{aligned}
$$

3. (10pts) (a) Find the general solution of

$$
u_{x}+y u_{y}=0,
$$

The solution is constant along the characteristic curve with equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{1} .
$$

Separating the variables gives

$$
y=c e^{x}
$$

where c is a constant. Thus the general solution is an arbitrary function of $c=y e^{-x}$,

$$
u(x, y)=f\left(y e^{-x}\right)
$$

(b) Show that one cannot solve

$$
u_{x}+y u_{y}=0
$$

subject to the boundary condition $u(x, 0)=x$.

We want to choose f so that

$$
\begin{aligned}
x & =u(x, 0) \\
& =f\left(e^{-x}\right) .
\end{aligned}
$$

Let $w=e^{-x}$. Then

$$
x=-\log w
$$

and

$$
f(w)=-\log w
$$

This gives the solution

$$
u(x, y)=-\log \left(y e^{-x}\right)
$$

However the logarithm function is not defined at zero. In fact

$$
\lim _{t \rightarrow 0^{+}} \log t=-\infty
$$

and so this function does not have the correct behaviour along the boundary.
4. (10pts) Find the regions in the xy-plane where the equation

$$
(1+x) u_{x x}+2 x y u_{x y}-y^{2} u_{y y}=0
$$

is elliptic, hyperbolic and parabolic.

The coefficients are $1+x, x y$ and $-y^{2}$. We consider the sign of the discriminant

$$
\begin{aligned}
\mathscr{D} & =(x y)^{2}-(1+x)\left(-y^{2}\right) \\
& =x^{2} y^{2}+y^{2}+x y^{2} \\
& =y^{2}\left(x^{2}+x+1\right) .
\end{aligned}
$$

y^{2} is always at least zero. If $y=0$ the discriminant is zero. On the other hand, $x^{2}+x+1$ is always positive.
If $y=0$ then the PDE is elliptic. If $y \neq 0$ the PDE is hyperbolic.
5. (10pts) Solve

$$
u_{t}=k u_{x x} \quad u(x, 0)=e^{-x} \quad \text { and } \quad u(0, t)=0
$$

on the half line $0<x<\infty$.

We want to solve the diffusion equation on the half line. Let $\phi_{\text {odd }}$ be the odd extension of $\phi(x)=e^{-x}$ to the whole line. Then

$$
\begin{aligned}
u(x, t) & =\int_{-\infty}^{\infty} S(x-y, t) \phi_{\text {odd }}(y) \mathrm{d} y \\
& =\int_{0}^{\infty}(S(x-y, t)+S(x+y, t)) \phi(y) \mathrm{d} y \\
& =\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty}\left(e^{(x-y)^{2} / 4 \pi k t}+e^{(x+y)^{2} / 4 \pi k t}\right) e^{-y} \mathrm{~d} y
\end{aligned}
$$

We complete the square in both integrals. Note that

$$
-(x+y)^{2}=-(-(-x)-y)^{2} .
$$

The exponents of the exponentials in the two integrals are

$$
-\frac{(y+2 k t-x)^{2}}{4 k t}+k t-x \quad \text { and } \quad-\frac{(y+2 k t+x)^{2}}{4 k t}+k t+x .
$$

To get the second expression just flip the sign of x. We make the change of variables

$$
p=\frac{y+2 k t-x}{\sqrt{4 k t}} \quad \text { and } \quad q=\frac{y+2 k t+x}{\sqrt{4 k t}}
$$

so that

$$
\mathrm{d} p=\frac{\mathrm{d} y}{\sqrt{4 k t}} \quad \text { and } \quad \mathrm{d} q=\frac{\mathrm{d} y}{\sqrt{4 k t}} .
$$

Thus

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{\pi}} e^{k t-x} \int_{(2 k t-x) / \sqrt{4 k t}}^{\infty} e^{-p^{2}} \mathrm{~d} p-\frac{1}{\sqrt{\pi}} e^{k t+x} \int_{(2 k t+x) / \sqrt{4 k t}}^{\infty} e^{-q^{2}} \mathrm{~d} q \\
& =\frac{1}{2}\left(e^{k t-x}-e^{k t+x}\right)-e^{k t-x} \mathscr{E} \operatorname{rf}((2 k t-x) / \sqrt{4 k t})+e^{k t+x} \mathscr{E} \operatorname{rf}((2 k t+x) / \sqrt{4 k t}) .
\end{aligned}
$$

6. (10pts) Solve

$$
u_{t t}=9 u_{x x}, \quad 0<x<\infty, \quad u(0, t)=0, \quad u(x, 0)=1, \quad u_{t}(x, 0)=0
$$

using the reflection method. This solution has a singularity; find its location.

Let $\phi(x)=1$ and $\psi(x)=0$ on the half line $0<x<\infty$. Then the odd extensions are $\psi_{\text {odd }}=0$ and

$$
\phi_{\text {odd }}(x)= \begin{cases}1 & \text { if } x>0 \\ -1 & \text { if } x<0 \\ 0 & \text { if } x=0\end{cases}
$$

We apply d'Alembert's formula

$$
u(x, t)=\frac{1}{2}\left(\phi_{\text {odd }}(x-3 t)+\phi_{\text {odd }}(x+3 t)\right) .
$$

There are two cases. If $x<3 t$ then we get

$$
u(x, t)=1+1=2 .
$$

If $x>3 t$ then we get

$$
u(x, t)=1-1=0 .
$$

Thus

$$
u(x, t)= \begin{cases}2 & \text { if } x<3 t \\ 0 & \text { if } x>3 t\end{cases}
$$

There is a singularity along the line $x=3 t$.
7. (10pts) Solve

$$
u_{t t}=c^{2} u_{x x}+e^{a x} \quad u(x, 0)=0 \quad \text { and } \quad u_{t}(x, 0)=0
$$

We want to solve the wave equation with a source on the whole interval. We apply the formula

$$
\begin{aligned}
u(x, t) & =\frac{1}{2 c} \iint_{\Delta} f \\
& =\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} e^{a y} \mathrm{~d} y \mathrm{~d} s \\
& =\frac{1}{2 a c} \int_{0}^{t}\left[e^{a y}\right]_{x-c(t-s)}^{x+c(t-s)} \mathrm{d} s \\
& =\frac{1}{2 a c} \int_{0}^{t} e^{a(x+c(t-s))}-e^{a(x-c(t-s))} \mathrm{d} s \\
& =\frac{1}{2 a^{2} c^{2}}\left[-e^{a(x+c(t-s))}-e^{a(x-c(t-s))}\right]_{0}^{t} \\
& =\frac{1}{2 a^{2} c^{2}}\left(-e^{a x}-e^{a x}+e^{a(x+c t)}+e^{a(x-c t)}\right) \\
& =\frac{1}{2 a^{2} c^{2}}\left(e^{a(x+c t)}+e^{a(x-c t)}-2 e^{a x}\right)
\end{aligned}
$$

One can indeed check that this satisfies all of the conditions.
8. (20pts) Find
(a) The Fourier sine series on the interval $(0, l)$ for $\phi(x)=1$.

We compute

$$
\begin{aligned}
A_{m} & =\frac{2}{l} \int_{0}^{l} \sin \frac{m \pi x}{l} \mathrm{~d} x \\
& =\frac{2}{m \pi}\left[-\cos \frac{m \pi x}{l}\right]_{0}^{l} \\
& =\frac{2}{m \pi}(-\cos m \pi+1) \\
& = \begin{cases}\frac{4}{m \pi} & m \text { is odd } \\
0 & m \text { is even. }\end{cases}
\end{aligned}
$$

Thus

$$
1=\frac{4}{\pi}\left(\sin \frac{\pi x}{l}+\frac{1}{3} \sin \frac{3 \pi x}{l}+\frac{1}{5} \sin \frac{5 \pi x}{l}+\ldots\right)
$$

(b) The Fourier sine series on the interval $(0, l)$ for $\phi(x)=x$.

We compute

$$
\begin{aligned}
A_{m} & =\frac{2}{l} \int_{0}^{l} x \sin \frac{m \pi x}{l} \mathrm{~d} x \\
& =\frac{2}{m \pi}\left[-x \cos \frac{m \pi x}{l}+\frac{l}{m \pi} \sin \frac{m \pi x}{l}\right]_{0}^{l} \\
& =\frac{2 l}{m \pi}(-1)^{m+1}
\end{aligned}
$$

Thus

$$
x=\frac{2 l}{\pi}\left(\sin \frac{\pi x}{l}-\frac{1}{2} \sin \frac{2 \pi x}{l}+\frac{1}{3} \sin \frac{3 \pi x}{l}+\ldots\right) .
$$

(c) The Fourier cosine series on the interval $(0, l)$ for $\phi(x)=x^{2} / 2$.

First we integrate the Fourier sine series for x to get

$$
\frac{x^{2}}{2}=c+\frac{2 l^{2}}{\pi^{2}}\left(-\cos \frac{\pi x}{l}+\frac{1}{4} \cos \frac{2 \pi x}{l}-\frac{1}{9} \cos \frac{3 \pi x}{l}+\ldots\right) .
$$

Now we integrate both sides from 0 to l to determine c.

$$
c l=\frac{l^{3}}{6} .
$$

Thus

$$
\frac{x^{2}}{2}=\frac{l^{2}}{6}+\frac{2 l^{2}}{\pi^{2}}\left(-\cos \frac{\pi x}{l}+\frac{1}{4} \cos \frac{2 \pi x}{l}-\frac{1}{9} \cos \frac{3 \pi x}{l}+\ldots\right) .
$$

(d) The Fourier series on the interval $(-l, l)$ for $\phi(x)=x^{3} / 6$.

First we integrate the Fourier cosine series for $x^{2} / 2$ to get the Fourier sine series on $(0, l)$. The constant of integration is zero as both sides are odd.

$$
\begin{aligned}
\frac{x^{3}}{6} & =\frac{l^{2} x}{6}+\frac{2 l^{3}}{\pi^{3}}\left(-\sin \frac{\pi x}{l}+\frac{1}{8} \sin \frac{2 \pi x}{l}-\frac{1}{27} \sin \frac{3 \pi x}{l}+\ldots\right) \\
& =\frac{l^{3}}{3 \pi}\left(\sin \frac{\pi x}{l}-\frac{1}{2} \sin \frac{2 \pi x}{l}+\frac{1}{3} \sin \frac{3 \pi x}{l}+\ldots\right)+\frac{2 l^{3}}{\pi^{3}}\left(-\sin \frac{\pi x}{l}+\frac{1}{8} \sin \frac{2 \pi x}{l}-\frac{1}{27} \sin \frac{3 \pi x}{l}+\right. \\
& =\frac{l^{3}}{3 \pi^{3}}\left(\left(\pi^{2}-6\right) \sin \frac{\pi x}{l}+\left(\frac{3}{4}-\frac{\pi^{2}}{2}\right) \sin \frac{2 \pi x}{l}+\left(\frac{\pi^{2}}{3}-\frac{2}{9}\right) \sin \frac{3 \pi x}{l}+\ldots\right) .
\end{aligned}
$$

Now observe that since both sides are odd, this is also the Fourier series for $x^{3} / 6$ on the whole interval $(-l, l)$.
9. (10pts) Consider a metal rod $0<x<l$, insulated along its sides but not at its ends, which is initially at temperature $=1$. Suddenly both ends are plunged into a bath a temperature $=0$. Write the formula for the differential equation, boundary conditions and initial condition.
Give the formula for the temperature $u(x, t)$ at later times.

We want to solve the diffusion equation

$$
u_{t}=k u_{x x}
$$

for the interval $0<x<l$ with initial condition $u(x, 0)=1$ and boundary conditions $u(0, t)=u(l, t)=0$.
We want to find the eigenfunctions $X^{\prime \prime}=-\lambda X$ such that $X(0)=$ $X(l)=0$. These are

$$
X_{n}=\sin \frac{n \pi x}{l}
$$

The separated solutions are then of the form

$$
u_{n}(x, t)=e^{-k n^{2} \pi^{2} k t / l^{2}} \sin \frac{n \pi x}{l}
$$

Turning these into a series we get

$$
u(x, t)=\sum_{n \geq 1} A_{n} e^{-k n^{2} \pi^{t} / l^{2}} \sin \frac{n \pi x}{l} .
$$

This satisfies the boundary conditions but not the initial conditions. If we plug in $t=0$ we get

$$
1=\sum_{n \geq 1} A_{n} \sin \frac{n \pi x}{l} .
$$

The coefficients A_{1}, A_{2}, \ldots are given by $8(\mathrm{i})$. It follows that

$$
u(x, t)=\frac{4}{\pi}\left(e^{-k \pi^{2} t / l^{2}} \sin \frac{\pi x}{l}+\frac{1}{3} e^{-9 k \pi^{2} t / l^{2}} \sin \frac{3 \pi x}{l}+\frac{1}{5} e^{-25 k \pi^{2} t / l^{2}} \sin \frac{5 \pi x}{l}+\ldots\right) .
$$

Bonus Challenge Problems

10. (10pts) Find the general solution of

$$
3 u_{t t}+10 u_{x t}+3 u_{x x}=\sin (x+t)
$$

We have

$$
\begin{aligned}
3 u_{t t}+10 u_{x t}+3 u_{x x} & =3 \partial_{x}^{2} u+10 \partial_{x} \partial_{t} u+3 \partial_{t}^{2} u \\
& =\left(3 \partial_{x}^{2}+10 \partial_{x} \partial_{t}+3 \partial_{t}^{2}\right) u \\
& =\left(3 \partial_{x}+\partial_{t}\right)\left(\partial_{x}+3 \partial_{t}\right) u
\end{aligned}
$$

Therefore we have to solve

$$
3 v_{x}+v_{t}=\sin (x+t) \quad \text { where } \quad v=u_{x}+3 u_{t} .
$$

The homogeneous version of the first equation has general solution

$$
v(x, t)=h(3 t-x),
$$

where h is an arbitrary differentiable function of one variable. Therefore

$$
v(x, t)=h(3 t-x)-\cos (x+t) / 4
$$

is the general solution of the original inhomogeneous equation. Thus we now just need to solve

$$
u_{x}+3 u_{t}=h(3 t-x)-\cos (x+t) / 4 .
$$

A particular solution is given by

$$
u(x, t)=f(3 t-x)-\sin (x+t) / 16
$$

where

$$
f^{\prime}=h / 8 .
$$

The associated homogeneous equation is

$$
u_{x}+3 u_{t}=0
$$

This has general solution

$$
u(x, t)=g(3 x-t)
$$

Thus the general solution to the original inhomogeneous equation is

$$
u(x, t)=f(3 t-x)+g(3 x-t)-\sin (x+t) / 16
$$

where f and g are arbitrary twice differentiable functions.
11. (10pts) Show that the (weak) maximum principle holds for the diffusion equation on the rectangle $0 \leq x \leq l, 0 \leq t \leq T$.

See lecture 10 .
12. (10pts) Dervive the formula for inhomogeneous wave equation on the whole line

$$
u_{t t}-c^{2} u_{x x}=f(x, t) \quad u(x, 0)=\phi(x) \quad \text { and } \quad u_{t}(x, 0)=\psi(x)
$$

See lecture 16 or model answers 7, 3.4.6 or 3.4.12. In addition, the book also has many other ways to derive this formula.
13. (10pts) Calculate

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}
$$

We use the answer to 8 (c).

$$
\frac{x^{2}}{2}=\frac{l^{2}}{6}+\frac{2 l^{2}}{\pi^{2}}\left(-\cos \frac{\pi x}{l}+\frac{1}{4} \cos \frac{2 \pi x}{l}-\frac{1}{9} \cos \frac{3 \pi x}{l}+\ldots\right) .
$$

If we set $x=0$ then we get

$$
0=\frac{l^{2}}{6}+\frac{2 l^{2}}{\pi^{2}}\left(-1+\frac{1}{4}-\frac{1}{9}+\ldots\right) .
$$

Solving for -1 times the expression in parentheses gives

$$
1-\frac{1}{4}+\frac{1}{9}+\frac{1}{25}+\cdots=\frac{\pi^{2}}{12} .
$$

Thus

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

