
1. First examples

A differential equation for a variable u(x, y, . . . ), which depends on
the independent variables x, y, . . . , is an equation which involves u and
some of its partial derivatives. Differential equations have traditionally
played a huge role in the sciences and so they have been heavily studied
in mathematics.

If u depends on x and y, there are two partial derivatives,

∂u

∂x
and

∂u

∂y
.

Since partial differential equations might involve lots of variables and
derivatives, it is convenient to introduce some more compact notation.

∂u

∂x
= ux and

∂u

∂y
= uy.

Note that

uxx =
∂2u

∂x2
uxy =

∂2u

∂x∂y
and uyy =

∂2u

∂y2
.

Recall some basic facts about derivatives. First of all derivatives are
local, meaning if you only change the function away from a point then
the derivative is unchanged (contrast this with the integral, which is far
from local; the area under the graph depends on the global behaviour).
Secondly if all 2nd derivatives exist and they are continuous then the
mixed partials are equal:

uxy = uyx.

Example 1.1. Suppose that

u(x, y) = sin(xy).

Then
ux = y cos(xy) and uy = x cos(xy).

But then

uyx = cos(xy) − xy sin(xy) and uxy = cos(xy) − xy sin(xy).

Partial differential equations are in general very complicated and
normally we can only make sense of the solutions of those equations
which come from applications. If there are two space variables then we
typically call them x and y but as usual t denotes a time variable and
x a space variable.

Here are some examples of partial differential equations

(1) ux + uy = 0 (transport)
(2) ux + yuy = 0 (transport)
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(3) ux + uuy = 0 (shock wave)
(4) uxx + uyy = 0 (Laplace’s equation)
(5) utt − uxx + u3 = 0 (wave with interaction)
(6) ut + uux + uxxx = 0 (dispersive wave)
(7) utt + uxxxx = 0 (vibrating bar)
(8) ut − iuxx = 0 (Schrödinger’s wave equation)

The general form of a partial differential equation looks like

F (x, y, u, ux, uy, . . . ) = 0.

Note that for ordinary differential equations, sometimes we blur the
difference between dependent and independent variables. The easiest
way to solve the ODE

du

dx
= u3

is to write
dx

du
= u−3

and integrate. We have no such luxury for PDEs.
The simplest invariant one can attach to a partial differential equa-

tion is its order, meaning the largest order of a partial derivative.
The first, second and third equations have order one; the fourth, fifth

and eighth have order two; the sixth order three; the seventh order four.
The most tractable PDEs are linear. Suppose that we write the

equation in the form

L u = 0.

Here L is an operator, typically involving derivatives. For the first
equation, we would put

L =
∂

∂x
+

∂

∂y

so that when we apply L to u we get the LHS of equation one. We
say that L is linear if

L (u + v) = L (u) + L (v) and L (cu) = cL (u)

for all choices of functions u and v and scalars c. The adage to remem-
ber is “double the input, double the output”and perhaps not surpris-
ingly linear operators are quite common in practice.

We say a PDE is linear if it is of the form

L (u) = 0,

for a linear operator L .
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(1), (2), (4), (7) and (8) are linear equations. (3), (5) and (6) are
not linear. (3) is not linear because of the uuy term, (5) is not linear
because of the u3 term, and (6) is not linear because of the uux term.

We sometimes refer to a linear equation

L (u) = 0,

as a homogeneous linear equation. If an equation has the form

L (u) = g,

where g is a function of the independent variables and L is a lin-
ear operator then we say the equation is an inhomogeneous linear
equation. For example,

log(xy)ux + tan(x2 + y2)uy = ey
3−x

is an inhomogeneous linear equation.
We will focus almost exclusively on linear equations, in fact linear

equations with constant coefficients. The key property of a linear equa-
tion is that if u and v are solutions of the linear equation then so is
u + v:

L (u + v) = L (u) + L (v)

= 0 + 0

= 0.

More generally, if u1, u2, . . . , un are solutions of a linear equation and
c1, c2, . . . , cn are scalars then

c1u1(x) + c2u2(x) + · · · + cnun(x)

is also a solution. This is sometimes called the principle of superpo-
sition. Another basic property of linear operators is that the sum of
a solution to an inhomogeneous linear equation plus a solution to the
underlying homogeneous linear equation is a solution to the original
inhomogeneous linear equation.

Now let’s look at some examples.

Example 1.2. Solve

uxx = 0

where u(x, y) is a function of x and y.

We solve this the usual way, by integrating both sides with respect
to x. This removes one partial derivative from the LHS and introduces
a constant of integration on the RHS.
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However this hides a subtlety, the constant of integration is in fact
an arbitrary function of y,

ux = f(y).

There are a number of ways to see that we get a function of y on the
RHS. For each value of y we get an ODE involving x. If we integrate
this ODE we get a constant of integration, but as we vary y, there
is no reason to expect this constant of integration to remain fixed.
Perhaps even more compelling, if we start with the function f(y) and
we differentiate it once with respect to x then we always get zero, as y
is independent of x.

If we integrate with respect to x one more time then we get

u(x, y) = f(y)x + g(y),

is the general solution to the PDE

uxx = 0

Here f(y) and g(y) are arbitrary functions of y.

Example 1.3. Solve
uxx − u = 0

where u(x, y) is a function of x and y.

Again, we just solve the corresponding ODE, taking account of the
fact that the constants of integration are in fact arbitrary functions of
y,

u(x, y) = f(y)ex + g(y)e−x.

Here f(y) and g(y) are again arbitrary functions of y.

Example 1.4. Solve
uxy = 0.

If we integrate with respect to x we get

uy = f(y).

Now if integrate with respect to y we get

u = F (y) + G(x),

where
F ′ = f.

Note that 2nd order PDEs all have two arbitrary functions in their
general solution. In the examples we gave, these arbitrary functions
are functions of one variable. So the function u(x, y) is ambiguous but
at least the ambiguity is a function of one variable.
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In fact functions of two variables are far more complicated than func-
tions of one variable. This is obvious from the graph of a function of two
variables, but it is also obvious if you think about how to approximate
functions. If you wanted to approximate a function of one variable, you
might pick a hundred equally spaced points x1, x2, . . . , x100 and write
down a table with two columns, xi and the value f(xi).

If you carried out the analagous procedure for a function f(x, y) of
two variables, you would take a grid, with 100×100 = 104 points. The
table would then contain three columns, a value for xi a value for yi
and the value of the function f(xi, yi). The important thing is that we
need 104 rows to get the same level of approximation.
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