
17. Separation of variables I

We now introduce a simple but powerful technique to solve PDEs.
Consider the Dirichlet boundary problem for a finite interval

utt = c2uxx for 0 < x < l

u(x, 0) = φ(x) ut(x, 0) = ψ(x) for t = 0

u(0, t) = u(l, t) = 0 for x = 0, l.

The idea is to first suppose that the solution has a particularly simple
form. It won’t be the case that every solution has the same form but it
will be the case we can write every solution as a sum of these solutions.

We look for separated solutions, that is, solutions of the form

u(x, t) = X(x)T (t).

Note that t and x are the input variables and X(x) and T (t) are the
outputs. For the time being we don’t worry about the initial conditions.

If we plug in the separated solution into the wave equation we get

X(x)T ′′(t) = c2X ′′(x)T (t).

Dividing by −c2X(x)T (t) this gives

− T ′′

c2T
= −X

′′

X
.

Note that both sides of the equation are constant. Indeed the LHS
only depends on t and the RHS only depends on x so that both sides
are independent of x and t. Suppose that the constant is λ, so that

− T ′′

c2T
= −X

′′

X
= λ.

Later we will see that λ > 0, which is why we use the minus sign.
It follows that λ = β2 for some β > 0. Then we get a pair of ODE’s,

X ′′ + β2X = 0 and T ′′ + β2T = 0.

The general solution of these ODE’s is

X(x) = C cos βx+D sin βx

T (t) = A cos βct+B sin βct.

Here A, B, C and D are constants.
Now we consider the boundary conditions. These imply that

0 = X(0)

= C cos 0 +D sin 0

= C,
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and

0 = X(l)

= C cos β +D sin βl

= D sin βl.

Since we are not interested in the solution C = D = 0 we must have
that βl is a root of sin, that is,

βl = nπ so that β =
nπ

l
.

In this case

Xn(x) = sin
nπx

l
.

Putting all of this together we get infinitely many separated solutions

un(x, t) =

(
An cos

nπct

l
+Bn sin

nπct

l

)
sin

nπx

l
,

one for each natural number n = 1, 2, 3, . . . . Here An and Bn are
arbitrary constants.

By linearity any finite sum is a solution to the wave equation

un(x, t) =
∑
n

(
An cos

nπct

l
+Bn sin

nπct

l

)
sin

nπx

l
.

Now if put t = 0 then we get

φ(x) =
∑
n

An sin
nπx

l

and

ψ(x) =
∑
n

Bn
nπc

l
sin

nπcx

l
.

Thus we can solve anyone of these problems when φ and ψ have the
given form.

It is sensible to ask if one can extend these finite sums to infinite
sums (much like going from Taylor polynomials to Taylor series). It
then becomes an interesting question to know which functions are rep-
resented by these infinite sums. This was the subject of an intense
debate that went on for nearly half a century. The stunning conclusion
is that pretty much any function φ and ψ can be represented this way.

The numbers
nπc

l
in front of t for T (t) are called the frequencies.
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If we go back to the violin string then the frequencies are

nπ
√
T

l
√
ρ
.

A similar trick works for diffusion.

ut = kuxx for 0 < x < l

u(x, 0) = φ(x) for t = 0

u(0, t) = u(l, t) = 0 for x = 0, l.

We look for separated solutions, that is, solutions of the form

u(x, t) = X(x)T (t).

If we plug in the separated solution into the wave equation we get

X(x)T ′(t) = kX ′′(x)T (t).

Dividing by kX(x)T (t) this gives

T ′

kT
=
X ′′

X
.

Note that both sides of the equation are constant. Indeed the LHS
only depends on t and the RHS only depends on x so that both sides
are independent of x and t. Suppose that the constant is −λ, so that

T ′

c2T
=
X ′′

X
= −λ.

Later we will see that λ > 0, which is why we use the minus sign.
It follows that λ = β2 for some β > 0. Then we get a pair of ODE’s,

X ′′ + β2X = 0 and T ′ + β2kT = 0.

The general solution of these ODE’s is

X(x) = C cos βx+D sin βx

T (t) = Ae−β
2kt.

Here A, C and D are constants.
As before, imposing the boundary conditions, we get that C = 0 and

βl = nπ so that β =
nπ

l
.

In this case

Xn(x) = sin
nπx

l
.

Putting all of this together we get infinitely many separated solutions

un(x, t) = Ane
−n

2π2

l2
kt sin

nπx

l
,
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one for each natural number n = 1, 2, 3, . . . . Here An is an arbitrary
constant.

By linearity any finite sum is a solution to the diffusion equation

un(x, t) =
∑
n

Ane
−n

2π2

l2
kt sin

nπx

l
.

Now if we put t = 0 then we get

φ(x) =
∑
n

An sin
nπx

l
.

Thus we can solve anyone of these problems when φ has the given form.
Note the factor of each term corresponding to exponential decay.

Imagine the following situation. A cylinder of liquid has some dye
in it. Both ends of the liquid open up to a huge vat of liquid. As
time progresses, any dye that goes into one of the vats, essentially
disappears. Thus as time progresses the amount of dye in the cylinder
decays to zero.

The numbers

λn =
(nπ
l

)2
and the functions Xn = sin

nπx

l
are sometimes called eigenvalues and eigenfunctions. In fact they
satisfy

− d2

dx2
X = λX,

where X(0) = X(l) = 0. In physics and engineering the eigenfunctions
are sometimes called the normal modes, since they are the solutions
which persist for all time.

Finally we check that the eigenvalues are all positive. First why
couldn’t they be zero? In this case we are solving

X ′′ = 0,

so that X(x) = Ax + B. The boundary conditions imply that A =
B = 0. But then X = 0 and this is not allowed as an eigenfunction.

What if λ < 0? Then we get

X(x) = A coshx+B sinhx.

The boundary conditions still imply that A = B = 0.
Finally consider the possibility that λ is a complex number. We can

still find β such that β2 = λ. Then we get

X(x) = Aeβx +Be−βx.

The two boundary conditions yield

A+B = X(0) = 0 and Aeβl +Be−βl = X(l) = 0.
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It follows that e2βl = 1. This implies that 2βl is a multiple of 2πi, so
that β is purely imaginary. But then λ < 0.
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