18. Neumann CONDITION

We will use the method of separation of variables to deal with Neumann boundary conditions on a finite interval. We replace the Dirichlet boundary conditions

$$
u(0, t)=u(l, t)=0
$$

with the boundary conditions

$$
u_{x}(0, t)=u_{x}(l, t)=0
$$

For the time being we don't worry if we have the diffusion equation or the wave equation.

We look for solutions of the form

$$
u(x, t)=X(x) T(t)
$$

This gives us the same ODE's as before, except that the boundary conditions have changed for $X(x)$.

$$
X^{\prime \prime}=-\lambda X \quad \text { where } \quad X^{\prime}(0)=X^{\prime}(l)=0
$$

We proceed as before. We first search for the positive eigenvalues $\lambda=\beta^{2}>0$. The general solution of the ODE is

$$
X(x)=C \cos \beta x+D \sin \beta x
$$

It follows that

$$
X^{\prime}(x)=-C \beta \sin \beta x+D \beta \cos \beta x
$$

The boundary conditions imply that

$$
D \beta=D \beta \cos 0=X(0)=0
$$

Thus $D=0$. But then

$$
-C \beta \sin \beta l=0
$$

As $C \neq 0$, it follows that

$$
\beta=\frac{\pi}{l}, \quad \frac{2 \pi}{l}, \quad \frac{23 \pi}{l}, \quad, \ldots
$$

as before. Thus

$$
X_{n}(x)=\cos \frac{n \pi x}{l}
$$

is an eigenfunction with eigenvalue

$$
\lambda_{n}=\left(\frac{n \pi x}{l}\right)^{2}
$$

One new feature is that 0 is also an eigenvalue. We want to solve

$$
X^{\prime \prime}=0
$$

The general solution is

$$
X(x)=A x+B .
$$

We have

$$
X^{\prime}(x)=A
$$

The boundary conditions imply that $A=0$, twice, as it were. So $X(x)=1$ is an eigenfunction with eigenvalue 0 .

It is not hard to rule out negative eigenvalues or even complex eigenvalues.

Suppose we start with the diffusion equation

$$
\begin{aligned}
u_{t} & =k u_{x x} \quad \text { for } \quad 0<x<l \\
u(x, 0) & =\phi(x) \quad \text { for } \quad t=0 \\
u(0, t)=u(l, t) & =0 \quad \text { for } \quad x=0, l .
\end{aligned}
$$

Then we get solutions of the form

$$
u(x, t)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} e^{-n^{2} \pi^{2} t / l^{2}} \cos \frac{n \pi x}{l} .
$$

If we plug in $t=0$ we get the initial conditions

$$
\phi(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{l}
$$

We will see later the reason to treat the first term differently.
Note that as $t \rightarrow \infty$ we each individual term decays very rapidly.
Now consider the wave equation

$$
\begin{aligned}
u_{t t} & =c^{2} u_{x x} \quad \text { for } \quad 0<x<l \\
u(x, 0) & =\phi(x) \quad u_{t}(x, 0)=\psi(x) \quad \text { for } \quad t=0 \\
u_{x}(0, t)=u_{x}(l, t) & =0 \quad \text { for } \quad x=0, l .
\end{aligned}
$$

The twist here is what happens for the eigenvalue $\lambda=0$. We get the ODE

$$
T^{\prime \prime}=0,
$$

so that

$$
T(t)=A+B t
$$

Thus we get solutions of the form

$$
u(x, t)=\frac{1}{2} A_{0}+\frac{1}{2} B_{0} t+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi c t}{l}+B_{n} \sin \frac{n \pi c t}{l}\right) \cos \frac{n \pi x}{l} .
$$

If we plug in $t=0$ we get the initial conditions

$$
\phi(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{l},
$$

and

$$
\psi(x)=\frac{1}{2} B_{0}+\sum_{n=1}^{\infty} B_{n} \frac{n \pi c}{l} \cos \frac{n \pi x}{l}
$$

