
19. Robin conditions

We consider the possibility that we have Robin boundary conditions,
for either the diffusion or the wave equation. After separating variables,
this means we are considering

X ′′ = −λX

where

X ′ − a0X = 0 at x = 0

X ′ + alX = 0 at x = l.

If we are looking at the temperature in a metal rod then radiation
of energy at both ends corresponds to a0 and al are both positive,
absorption of energy at both ends corresponds to a0 and al are both
negative, and insulation of energy at both ends if a0 and al are both
zero.

On the other hand, if we are considering a vibrating string then the
string shares its energy with the endpoints if a0 and al are both positive
and the string gains energy from the endpoints if a0 and al are both
negative.

Note that at the endpoint x = 0 moving to the left corresponds to
leaving the region 0 < x < l and at the endpoint x = l moving to the
right corresponds to leaving the region 0 < x < l. This explains why
there is a difference in sign between a0 and al.

We now look for solutions to the ODE. It will turn out that most
eigenvalues are positive. In special conditions there might be one neg-
ative eigenvalue.

We first look for positive eigenvalues,

λ = β2 > 0.

In this case the solution of the ODE is

X(x) = C cos βx+D sin βx.

It follows that

X ′(x)± aX(x) = (βD ± aC) cos βx+ (−βC ± aD) sin βx

If we impose the boundary conditions this gives us a pair of linear
equations for C and D.

βD − a0C = 0

(βD + alC) cos βl + (−βC + alD) sin βl = 0
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If we convert these equations to matrix form we get(
−a0 β

al cos βl − β sin βl β cos βl + al sin βl

)(
C
D

)
=

(
0
0

)
.

If λ is an eigenvalue then this matrix has a non-trivial solution. The
condition that this equation has a non-trivial solution is equivalent to
the condition that the determinant is zero. Thus we must have

a0(β cos βl + al sin βl) = β(β sin βl − al cos βl).

Dividing through by cos βl and solving for tan βl we get

tan βl =
(a0 + al)β

β2 − a0al
.

The corresponding eigenfunction is

X(x) = β cos βx+ a0 sin βx.

It is interesting to note that there is an exceptional case when cos βl =
0. It is not hard to see that this means β =

√
a0al.

We now try to solve for β. It is not possible, in general, to find
an exact formula for the solutions. One can either try to determine
approximations of the numerical values or determine the qualitative
behaviour of the solutions. We will do the latter, by considering the
graph of both sides of the equation.

We view both sides of the equation as functions of β; where these
two functions intersect determines the eigenvalues (namely, square the
corresponding value of β).

The LHS is easy, it is the graph of the tangent function. The RHS
is a rational function, whose behaviour depends heavily on a0 and a1.

Case I: radiation at both ends: a0 > 0 and a1 > 0. The rational
function has an asymptote at

√
a0a1.

From the picture, one can see that(nπ
l

)2
< λn <

(
(n+ 1)π

l

)2

.

The other thing which one can see from the picture is that

lim βn − n
π

l
= 0.

There are many other cases. The book deals with another one in
detail.

Now suppose that the eigenvalue is negative. Let

λ = −γ2 < 0.
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Then
X(x) = C cosh γx+D sinh γx.

The same analysis as before leads to

tanh γl = −(a0 + al)γ

γ2 + a0al
.

If a0 and a1 > 0 one can see that there are no negative eigenvalues.
If a0 < 0 and al > 0, and a0 + al > 0, so that there is more radiation
than absorption, the situation is more complicated.

If

0 <
−(a0 + al)

a0al
< l,

then there is a negative eigenvalue.
Let us consider the physical consequences of a negative eigenvalue.

We have
u(x, t) =

∑
Tn(t)Xn(x)

then

Tn(t) =

{
Ane

−λnkt for diffusion

An cos
√
λnct+Bn sin

√
λnct for waves.

For example, for diffusion, if λn < 0 then we have one term that
increases with time.
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