
2. First order linear

In this section we will see how to solve first order linear partial
differential equations for a function of two variables.

As a warmup, we start with the constant coefficient case. The general
constant coefficient first order partial differential equation takes the
form

aux + buy = 0,

where a and b are constants.
We look at two ways to figure out the solution to this PDE. The first

is geometric and the second more algebraic, but they are also clearly
two sides of the same coin.

First note that if we start with the very simple example of

ux = 0,

then the general solution is

u(x, y) = f(y),

where f(y) is an arbitrary function of y. The solution u(x, y) is constant
on the horizontal line y = c, c a constant.

Geometric method:
Consider the vector

~v = aı̂ + b̂ = (a, b).

As

∇~vu =

(
∂

∂x
ı̂ +

∂

∂y
̂

)
u · (aı̂ + b̂)

=

(
∂u

∂x
ı̂ +

∂u

∂y
̂

)
· (aı̂ + b̂)

= aux + buy,

is the directional derivative of u in the direction of ~v, the equation

aux + buy = 0,

is equivalent to requiring that the directional derivative is zero. But
then u is constant along the lines parallel to ~v.

The vector

(−b, a)

is orthogonal to ~v so that the lines

bx− ay = c
1



where c is a constant, are parallel to ~v. The solution u(x, y) is constant
on every such line, so that u(x, y) only depends on the quantity bx−ay.
It follows that the general solution to the PDE is

u(x, y) = f(bx− ay),

where f is any function of one variable. In fact, given c, the function
u(x, y) has only one value f(c) and as c = bx− ay we get

u(x, y) = f(c) = f(bx− ay).

Algebraic method:
The idea is to change variables (or better, make a change of coordi-

nates):
x′ = ax + by and y′ = bx− ay.

We have to express the PDE using the new coordinates. To do this,
we use the chain rule:

ux =
∂u

∂x

=
∂u

∂x′
∂x′

∂x
+

∂u

∂y′
∂y′

∂x

= aux′ + buy′ .

Similarly

uy =
∂u

∂y

=
∂u

∂x′
∂x′

∂y
+

∂u

∂y′
∂y′

∂y

= bux′ − auy′ .

It follows that

aux + buy = a(aux′ + buy′) + b(bux′ − auy′)

= (a2 + b2)ux′ .

As a2 + b2 6= 0, it follows that the old equation

aux + buy = 0,

reduces to
ux′ = 0.

The general solution to this PDE is

u(x′, y′) = f(y′)

and as y′ = bx− ay this reduces to the same solution

u(x, y) = f(bx− ay),
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we get using the geometric method.

Example 2.1. Solve
12ux − 5uy = 0,

including the auxiliary condition that u(0, y) = y2.

We know that the general solution is

u(x, y) = f(−5x− 12y).

If we put x = 0 this reduces to

y2 = u(0, y) = f(−12y).

If we put w = −12y then

f(w) =
w2

144
.

Thus the solution is

u(x, y) =
(5x + 12y)2

144
.

Note that it is easy to check that this is a solution. Indeed

ux =
10(5x + 12y)

144
and uy =

24(5x + 12y)

144
.

In this case

12ux − 5uy =
10(5x + 12y)

12
− 10(5x + 12y)

12
= 0.

On the other hand

u(0, y) =
(12y)2

144
= y2,

as required.
One can push this method a little bit further to the case of variable

coefficients.

Example 2.2. Solve
ux + yuy = 0.

This is a linear PDE with variable coefficient y in front of uy. At the
point (x, y) the solution has directional derivative zero in the direction
of (1, y). The curves in the (x, y)-plane with tangent vectors (1, y) have
slopes y. Hence their equations are

dy

dx
=

y

1
.
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The general solution of this ODE is

y = Cex.

Note that there is one curve for each value of C and these curves
cover the (x, y)-plane, once, and once only. These curves are called the
characteristic curves of the PDE.

u(x, y) is constant on these curves as

d

dx
u(x,Cex) =

∂u

∂x
+ Cex

∂u

∂y

= ux + yuy

= 0.

It follows that u(x, y) is a function only of

C = ye−x.

Thus

u(x, y) = f(e−xy)

is the general solution of this PDE, where f is an arbitrary function of
one variable.

Example 2.3. Solve the PDE in (2.2) subject to the condition

u(0, y) = y2.

We want

y2 = u(0, y)

= f(e−0y)

= f(y).

Thus

u(x, y) = (e−xy)2

= e−2xy2.

Example 2.4. Solve the PDE

ux + (3x2y)uy = 0.

We first solve the ODE

dy

dx
= 3x2y

to find the characteristic curves. By separation of variables we have

log y = x3 + c.
4



Thus the characteristic curves are given by

y = Cex
3

.

It follows that
u(x, y) = f(ye−x

3

)

is the general solution, where f is an arbitrary function of one variable.
It is easy to check that these are solutions. We have

ux = −3x2ye−x
3

f ′(ye−x
3

) and uy = e−x
3

f ′(ye−x
3

).

In this case

ux + 3x2yuy = −3x2ye−x
3

f ′(ye−x
3

) + 3x2ye−x
3

f ′(ye−x
3

)

= 0.
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