21. PARITY PERIODICITY AND COMPLEXITY

We say that a function ϕ is periodic, with period p, if

$$
\phi(x+p)=\phi(x) \quad \text { for all } \quad x
$$

If ϕ is periodic, with period p, then ϕ is periodic with period $n p$ for any positive integer n. If $\phi(x)$ has period p then $\phi(a x)$ has period p / a.

Note that if ϕ_{1} and ϕ_{2} are periodic with period p then $a \phi_{1}$ also has period p and so does ϕ_{1} and ϕ_{2}.

Finally, given a function ϕ defined on an interval of length p there is unique extension of ϕ to the whole real line of a function with period p (well, strictly speaking the function is not defined at the two endpoints of the interval).

As cos and \sin have period 2π it follows that $\cos \pi x / l$ and $\sin \pi x / l$ have period $2 l$ and so $\cos n \pi x / l$ and $\sin n \pi x / l$ also have period $2 l$. But then the full Fourier series has period $2 l$. Given a function ϕ on $(-l, l)$ there is a unique function on the whole real line with period $2 l$, and this is equal to the Fourier series.

Now if we start with a function ϕ on $(0, l)$ there is a unique extension of ϕ to an odd function on the interval $(-l, l)$ and a unique extension of this to a periodic function on the whole real line. This is the same as the Fourier sine series.

On the other hand, if we start with a function ϕ on $(0, l)$ there is a unique extension of ϕ to an even function on the interval $(-l, l)$ and a unique extension of this to a periodic function on the whole real line. This is the same as the Fourier cosine series.

Put differently, the Fourier sine series on $(0, l)$ is the same as a Fourier series on $(-l, l)$ of an odd function. Similarly the Fourier cosine series on $(0, l)$ is the same as a Fourier series on $(-l, l)$ of an odd function.

We can match this to boundary conditions. If we want to solve the wave/diffusion equation on ($0, l$) with Dirichlet boundary conditions then we want the Fourier sine series, since we want an even function.

If we want to solve the wave/diffusion equation on $(0, l)$ with Neumann boundary conditions then we want the Fourier cosine series, since we want an even function.

If we want to solve the wave/diffusion equation on $(-l, l)$ with periodic boundary conditions then we want the Fourier series.

It is sometimes convenient to work with complex functions, rather than real functions, when we are looking at eigenfunctions of

$$
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}
$$

on $(-l, l)$. Recall that DeMoivre's theorem,

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

It follows that

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \quad \text { and } \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

In fact

$$
e^{i n \pi x / l} \quad \text { and } \quad e^{-i n \pi x / l}
$$

are two eigenfunctions with eigenvalue

$$
\lambda=\left(\frac{n \pi}{l}\right)^{2}
$$

In fact instead of writing $\phi(x)$ in terms of cosine and sine, instead we can write as a sum of exponentials, with complex coefficients:

$$
\phi(x)=\sum_{n=-\infty}^{n=\infty} c_{n} e^{i n \pi x / l}
$$

Note that this is a double sum, the index goes from $-\infty$ to ∞.
It is interesting to note that the same magic formula for integration is still valid:

$$
\begin{aligned}
\int_{-l}^{l} e^{i n \pi x / l} e^{-i m \pi x / l} \mathrm{~d} x & =\int_{-l}^{l} e^{i(n-m) \pi x / l} \mathrm{~d} x \\
& =\left[\frac{l}{i(n-m) \pi} e^{i(n-m) \pi x / l}\right]_{-l}^{l} \\
& =\frac{l}{i(n-m) \pi}\left((-1)^{n-m}-(-1)^{m-n}\right) \\
& =0
\end{aligned}
$$

provided $n \neq m$. If $n=m$ then we are integrating 1 over $(-l, l)$ and the answer is $2 l$.

As before, this implies there is a simple formula for the coefficients c_{m} :

$$
c_{m}=\frac{1}{2 l} \int_{-l}^{l} \phi(x) e^{-i m \pi x / l} \mathrm{~d} x
$$

