
3. Flows vibrations and diffusions

In this section we give some quick derivations of some simple PDEs
that arise in physics.

Example 3.1 (Simple transport). Consider a fluid, water say, flowing
at a constant rate c in a horizontal pipe of fixed cross-section in the
positive x direction.

A substance, a pollutant say, is suspended in the water. Let u(x, t)
be its concentration in grams/centimeter at time t. Then

ut + cux = 0,

that is, the rate of change of concentration is proportional to the gra-
dient (we assume that diffusion is negligible).

Solving this constant coefficient linear PDE, we see that the solution
is a function of x− ct. The means that the substance moves right at a
constant speed c.

We give a quick derivation of this PDE. The amount of pollutant in
the interval [0, b] at the time t in grams is

M =

∫ b

0

u(x, t) dx.

At the time t + h the same molecules of pollutant have all moved to
the right by c · h centimeters. It follows that

M =

∫ b

0

u(x, t) dx =

∫ b+ch

ch

u(x, t+ h) dx.

If we differentiate with respect to b we get

u(b, t) = u(b+ ch, t+ h).

If we differentiate with respect to h and put h = 0 we get

0 = cux(b, t) + ut(b, t),

which is the equation in (3.1).

Example 3.2 (Vibrating string). Imagine a flexible, elastic homoge-
neous string of length l, which undergoes small transverse vibrations,
for example, a guitar string.

We assume that the string remains in a plane. We choose coordi-
nates so that the ends of the string are at the origin and at the point
(l, 0). Let u(x, t) denote its vertical position, the displacement from its
equilibrium position, at time t and position x.

As the string is perfectly flexible, the tension (or force) is directed
tangentially along the string. Let T (x, t) be the magnitude of the
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tension vector. Let ρ be the density (mass per unit length) of the
string, a constant as the string is homogeneous.

Recall the vector form of Newton’s law:

~F = m~a.

By assumption

|~F | = T (x, t).

We separate the motion into two parts, up and down and side to side.
The slope of the string at x2 is ux(x2, t). If we draw a triangle with
sides 1 and ux the other side has length√

1 + u2x.

The force then has components

T√
1 + u2x

and
Tux√
1 + u2x

.

We assume that the string only moves up and down. We consider what
happens over a piece of the string from x0 to x1. We assume that the
string is roughly straight over this piece so that the force is just the
difference of the two forces at the ends x0 and x1. We integrate both
sides of Newton’s law over the string:[

T√
1 + u2x

]x1

x0

= 0[
Tux√
1 + u2x

]x1

x0

=

∫ x1

x0

ρutt dx.

The first equation represents what happens horizontally and the second
vertically.

If we assume that ux is small then we can replace√
1 + u2x

by 1. Indeed, if we apply the binomial (or Taylor’s) theorem we get

(1 + u2x)1/2 = 1 +
1

2
u2x + . . . .

As we are assuming that ux is small, it follows that u2x is even smaller
and so we can ignore u2x and the higher terms (it is easy to justify this
approximation, for example by using Taylor’s theorem with remainder).
The first equation then implies that T is constant along the string. We
assume that T is independent of t as well.
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If we differentiate the second equation then we get

(Tux)x = ρutt.

Putting all of this together we get the wave equation:

utt = c2uxx where c =

√
T

ρ
.

It will turn out that c is the wave speed.
There are some variations on a theme:

(i) If we want to account of air resistance then we get an extra term
proportional to the speed:

utt − c2uxx + rut = 0.

(ii) If there is a transverse elastic force (such as a coiled spring) then
there is an extra term proportional to the displacement:

utt − c2uxx + ku = 0.

(iii) If there is an externally applied force, there is an extra term

utt − c2uxx = f(x, t),

and the equation becomes inhomogeneous.

Example 3.3 (Vibrating drum). The two dimensional version of string
is an elastic, flexible, homogeneous drumhead, that is, a membrane
stretched over a frame.

Suppose that the frame lies in the (x, y)-plane and let u(x, y, t) be
the vertical displacement. Following an argument similar to the one
for the vibrating string (but which uses vector calculus, see the book
for the derivation), we get the two dimensional wave equation

utt = c2(uxx + uyy) where c =

√
T

ρ
.

The operator

L =
∂2

∂x2
+

∂2

∂y2
,

is known as the two dimensional Laplacian. It is denoted ∆ or ∇2.
The three dimensional wave equation takes the same form but where

the RHS has the extra term uzz.

Example 3.4 (Diffusion). Imagine a motionless liquid filling a straight
tube and a chemical substance, a dye say, diffusing through the liquid.
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The dye moves from regions of higher concentration to regions of
lower concentration. The rate of motion is proportional to the concen-
tration gradient (known as Fick’s law of diffusion). Let u(x, t) be the
concentration (mass be unit length) of the dye at position x of the pipe
at time t.

The mass at time t in the section of pipe from x0 to x1 is

M(t) =

∫ x1

x0

u(x, t) dx,

so that differentiating under the integral sign, we get

dM(t)

dt
=

∫ x1

x0

ut(x, t) dx,

The mass only changes by entering or leaving at the endpoints and so
by Fick’s law

dM(t)

dt
= flow in− flow out

= kux(x1, t)− kux(x0, t),

for some constant k. Equating the two expressions for the LHS, we get∫ x1

x0

u(x, t) dx = kux(x1, t)− kux(x0, t).

If we differentiate with respect to x we get the diffusion equation

ut = kuxx.

In three dimensions we get

ut = k(uxx + uyy + uzz) = k∆u.

We define an operator

∇ =
∂

∂x
ı̂+

∂

∂y
̂+

∂

∂z
k̂,

as follows. If we have a scalar function, f(x, y, z),

f : R3 −→ R

then

∇f = (fx, fy, fz),

a function

∇f : R3 −→ R3.

If we have a function

g : R3 −→ R3 given by g(x, y, z) = (a(x, y, z), b(x, y, z), c(x, y, z))
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then
∇ · g = ax + by + cz.

Note that
∇2f = ∇ · (∇f) = ∆f,

the Laplacian of f .
If there is an external source of dye and the rate of diffusion is variable

then the diffusion equation becomes

ut = ∇ · (k∇f) + f(x, t).

Example 3.5 (Heat flow). Let u(x, y, z, t) be the temperature and let
H(t) be the heat (in calories say) in a region D of space.

The heat equation is the PDE

cρut = ∇ · (κ∇f).

Here c is the specific heat of the material (the amount of energy it takes
to raise the material by a set temperature), ρ is its density and κ is the
heat conductivity.

Note that this has the same form as the diffusion equation.
In all four of the previous examples, suppose that we are in a physical

state where the situation is constant in time, so that ut = utt = 0. For
both the wave and the heat equation, the PDE reduces to

∆u = 0,

Laplace’s equation. Solutions to Laplace’s equation are called har-
monic functions.

Example 3.6 (Hydrogen atom). Consider an electron moving around
a proton.

Let m be the mass of the electron, e its change, and ~ Planck’s
constant divided by 2π. Put the proton at the origin of coordinates
and let

r = (x2 + y2 + z2)1/2

be the distance to the origin. Then the motion of the electron is given
by a “wave function” u(x, y, z, t) which satisfies Schrödinger’s wave
equation

−i~ut =
~2

2m
∆u+

e2

r
u.
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