SECOND MIDTERM
 MATH 110A, UCSD, AUTUMN 18

You have 80 minutes.

There are 6 problems, and the total number of points is 70. Show all your work. Please make your work as clear and easy to follow as possible.
$\overline{2}$
Name: \qquad
Signature: \qquad
Student ID \#: \qquad

Problem	Points	Score
1	15	
2	10	
3	10	
4	15	
5	10	
6	10	
7	15	
8	10	
9	10	
Total	70	

1. (15pts) (i) Give the definition of the Heaviside step function.

$$
H(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x<0\end{cases}
$$

(ii) Write down the kinetic energy of an infinite piece of string with density ρ and tension T.

$$
\mathrm{KE}=\frac{1}{2} \rho \int_{-\infty}^{\infty} u_{t}^{2} \mathrm{~d} x
$$

(iii) State the maximum principle (weak or strong, your choice) for the diffusion equation.

Strong maximum principle: If $u(x, t)$ is a solution to the diffusion equation on the rectangle $0 \leq x \leq l$ and $0 \leq t \leq T$ and $u(x, t)$ achieves its maximum either at an interior point, where $0<x<l$ and $0<t<T$ or where $t=T$, then $u(x, t)$ is constant.
2. (10pts) Find the solution of the PDE

$$
u_{t t}=c^{2} u_{x x}
$$

subject to the auxiliary conditions $u(x, 0)=e^{x}$ and $u_{t}(x, 0)=\sin x$, where $u(x, t)$ depends on x and t.

We apply d'Alembert's formula

$$
u(x, t)=\frac{1}{2}\left(e^{x+c t}+e^{x-c t}\right)+\frac{1}{2 c}(\cos (x-c t)-\cos (x+c t)) .
$$

After using some standard identities we get

$$
u(x, t)=e^{x} \cosh c t+\frac{1}{c} \sin x \sin c t .
$$

(ii) The midpoint of a piano string of tension T, density ρ and length l is hit by a hammer whose head diameter is $2 a$ (assume $a<l / 6$). How long does it take for the disturbance to reach a flea sitting at a distance of l/3 from one end?

The solution involves two waves traveling at speeds

$$
c=\sqrt{\frac{T}{\rho}}
$$

to the left and right. The flea is at at distance of $l / 6$ from the centre of the string, so at a distance of

$$
\frac{l}{6}-a
$$

from the nearest edge of the hammer blow. Therefore the disturbance meets the flea after

$$
\frac{l-6 a}{6 c}=\frac{\sqrt{\rho}(l-6 a)}{6 \sqrt{T}}
$$

units of time.
3. (10pts) (i) Solve the PDE

$$
u_{t}=k u_{x x}
$$

subject to the auxiliary conditions

$$
u(x, 0)=1 \quad \text { for }|x|<l \quad \text { and } \quad u(x, 0)=0 \quad \text { for }|x|>l .
$$

where $u(x, t)$ depends on x and t and your answer involves the error function.

Note that

$$
u(x, 0)=H(x+l)-H(x-l)
$$

On the other hand, $Q(x+l, t)$ is a solution to the diffusion equation with initial conditions $H(x+l)$ and $Q(x-l, t)$ is a solution to the diffusion equation with initial conditions $H(x-l)$. It follows that $Q(x+l, t)-Q(x-l, t)$ is a solution to the diffusion equation with initial condition $H(x+l)-H(x-l)$. Thus

$$
Q(x+l, t)-Q(x-l, t)=\frac{1}{2}\left(\mathscr{E} \mathrm{rf}\left(\frac{x+l}{\sqrt{4 k t}}\right)-\mathscr{E} \mathrm{rf}\left(\frac{x-l}{\sqrt{4 k t}}\right)\right) .
$$

(ii) If $u(x, t)$ is a solution of the diffusion equation $u_{t}=k u_{x x}$ then show that the dilated function $u(\sqrt{a} x$, at $)$ is a solution, where $a>0$ is a constant.

If we apply the chain rule to

$$
v(x, t)=u(\sqrt{a} x, a t)
$$

then we get

$$
\begin{aligned}
v_{t} & =\frac{\partial(a t)}{\partial t} u_{t} \\
& =a u_{t} .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
v_{x} & =\frac{\partial(\sqrt{a} t)}{\partial x} u_{x} \\
& =\sqrt{a} u_{x}
\end{aligned}
$$

so that

$$
\begin{aligned}
v_{x x} & =\sqrt{a} \sqrt{a} u_{x x} \\
& =a u_{x x} .
\end{aligned}
$$

4. (15pts) Solve

$$
u_{t}=k u_{x x}
$$

where $u(x, 0)=x^{2}$.
$u_{x x x}$ is a solution to the diffusion equation, as any derivative of a solution is a solution. As $u(x, 0)=x^{2}$, we have $u_{x}(x, 0)=2 x, u_{x x}(x, 0)=2$ and $u_{x x x}(x, 0)=0$. By uniqueness, it follows that $u_{x x x}(x, t)=0$. If we integrate thrice we get

$$
u(x, t)=A(t) x^{2}+B(t) x+C(t)
$$

In this case

$$
u_{t}=A^{\prime}(t) x^{2}+B^{\prime}(t) x+C^{\prime}(t) \quad \text { and } \quad u_{x x}=2 A(t)
$$

As u is a solution of the diffusion equation we get

$$
A^{\prime}(t) x^{2}+B^{\prime}(t) x+C^{\prime}(t)=2 k A(t) .
$$

It follows that $A^{\prime}(t)=B^{\prime}(t)=0$ and $C^{\prime}(t)=2 A(t)$. From the first two equations we deduce that $A(t)=a$ and $B(t)=b$ are constants. If we plug in $t=0$ we see that $a=1$ and $b=0$. From the equation $C^{\prime}(t)=2 k$ we see that $C(t) 2=2 k t+c$ and from the initial condition we see that $c=0$.
Thus

$$
u(x, t)=x^{2}+2 k t
$$

is a solution to the diffusion equation such that $u(x, 0)=x^{2}$.
5. (10pts) Show that if u and v are two solutions of the diffusion equation $u_{t}=k u_{x x}$ and if $u \leq v$ for $t=0, x=0$ and $x=l$ then $u \leq v$ for $0 \leq t \leq \infty$ and $0 \leq x \leq l$.

It suffices to show this in the rectangle defined by the extra condition $t \leq T$.
Let $w=v-u$. Note that w is a solution to the diffusion equation by linearity. By hypothesis $w \geq 0$ for for $t=0, x=0$ and $x=l$. By the minimum principle the minimum of w occurs on the three sides $t=0$, $x=0$ and $x=l$. The minimum on these three sides is at least zero and so the minimum of w on the whole rectangle is at least zero, that is, $w \geq 0$ on the whole rectangle.
But then $u \leq v$ on the whole rectangle.
6. (10pts) Consider the diffusion equation

$$
u_{t}=k u_{x x}
$$

subject to the condition $u(x, 0)=\phi(x)$.
Show that if $\phi(x)$ is odd then $u(x, t)$ is an odd function of x.

Consider $v(x, t)=u(x, t)+u(-x, t)$. By linearity v is a solution of the diffusion equation. We have

$$
\begin{aligned}
v(x, 0) & =u(x, 0)+u(-x, 0) \\
& =\phi(x)+\phi(-x) \\
& =0
\end{aligned}
$$

Thus v is a solution to the diffusion equation such that $v(x, 0)$ is identically zero. Another such function is the function which is identically zero. By uniqueness v is identically zero.
But then

$$
u(x, t)+u(-x, t)=0
$$

so that u is odd.

Bonus Challenge Problems

7. (15pts) Solve

$$
u_{x x}+u_{x t}-20 u_{t t}=0
$$

where $u(x, 0)=\phi(x)$ and $u_{t}(x, 0)=\psi(x)$.

$$
\begin{aligned}
u_{x x}+u_{x t}-20 u_{t t} & =\partial_{x}^{2} u+\partial_{x} \partial_{t} u-20 \partial_{t}^{2} u \\
& =\left(\partial_{x}-4 \partial_{t}\right)\left(\partial_{t}+5 \partial_{t}\right) u .
\end{aligned}
$$

Therefore we have to solve

$$
v_{x}-4 v_{t}=0 \quad \text { where } \quad v=u_{x}+5 u_{t}
$$

The first equation has general solution

$$
v(x, t)=h(4 x+t),
$$

where h is an arbitrary differentiable function of one variable. Therefore we now just need to solve

$$
u_{x}+5 u_{t}=h(4 x+t)
$$

A particular solution is given by

$$
u(x, t)=f(4 x+t) \quad \text { where } \quad f^{\prime}=h / 9
$$

The associated homogeneous equation

$$
u_{x}+5 u_{t}=0 \quad \text { has general solution } \quad u(x, t)=g(5 x-t) .
$$

Thus the general solution to the original inhomogeneous equation is

$$
u(x, t)=f(x+t / 4)+g(x-t / 5)
$$

We now want to choose f and g such that

$$
f(y)+g(y)=\phi(y) \quad \text { and } \quad f^{\prime}(y) / 4-g^{\prime}(y) / 5=\psi(y)
$$

Differentiating the first equation and solving for f^{\prime} and g^{\prime} we get

$$
f^{\prime}(y)=\frac{4}{9}\left(\phi^{\prime}(y)+5 \psi(y)\right) \quad \text { and } \quad g^{\prime}(y)=\frac{5}{9}\left(\phi^{\prime}(y)-4 \psi(y)\right) .
$$

Integrating and substituting for $x+t / 4$ and $x-t / 5$ we get
$f(x+t / 4)=\frac{4}{9}\left(\phi(x+t / 4)+\int_{-\infty}^{x+t / 4} 5 \psi(y) \mathrm{d} y\right) \quad$ and $\quad g(x-t / 5)=\frac{5}{9}\left(\phi(x-t / 5)-\int_{-\infty}^{x-t / 5} 4 \psi(y) \mathrm{d} y\right)$.
Thus the solution to the PDE with auxiliary conditions is
$u(x, t)=\frac{4}{9}\left(\phi(x+t / 4)+\int_{-\infty}^{x+t / 4} 5 \psi(y) \mathrm{d} y\right)+\frac{5}{9}\left(\phi(x-t / 5)-\int_{-\infty}^{x-t / 5} 4 \psi(y) \mathrm{d} y\right)$.
8. (10pts) Consider the solution $Q(x, t)$ of the diffusion equation such that $Q(x, 0)=H(x)$ is the Heaviside step function.
Assuming that Q is a function g of

$$
p=\frac{x}{\sqrt{4 k t}}
$$

derive an ODE satisfied by g and solve this ODE to find an expression for $Q(x, t)$.

See lecture 11.
9. (10pts) Use your answer to 8 to find a formula for the solution $u(x, t)$ to the diffusion equation such that $u(x, 0)=\phi(x)$.

See lecture 11.

