MODEL ANSWERS TO THE FIRST HOMEWORK

1.1.2 (a) linear;

$$
\begin{aligned}
\mathscr{L}(u+v) & =(u+v)_{x}+x(u+v)_{y} \\
& =u_{x}+v_{x}+x u_{y}+x v_{y} \\
& =\mathscr{L} u+\mathscr{L} v
\end{aligned}
$$

and

$$
\begin{aligned}
\mathscr{L}(c u) & =(c u)_{x}+x(c u)_{x} \\
& =c u_{x}+c x u_{x} \\
& =c \mathscr{L} u .
\end{aligned}
$$

(b) Not linear;

$$
\begin{aligned}
\mathscr{L}(2 u) & =(2 u)_{x}+(2 u)(2 u)_{y} \\
& =2 u_{x}+4 u u_{y} \\
& \neq 2 u_{x}+2 u u_{y} \\
& =2 \mathscr{L} u .
\end{aligned}
$$

(d) Not linear;

$$
\begin{aligned}
\mathscr{L}(2 u) & =(2 u)_{x}+(2 u)_{y}+1 \\
& \neq 2 u_{x}+2 u_{y}+2 \\
& =2 \mathscr{L} u .
\end{aligned}
$$

1.1.3 (a) The order is two, due to the term $u_{x x}$; it is linear inhomogeneous, as we can put the equation into the form

$$
u_{t}-u_{x x}=-1
$$

and the operator

$$
\mathscr{L}=\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}
$$

is linear;

$$
\begin{aligned}
\mathscr{L}(u+v) & =(u+v)_{t}-(u+v)_{x x} \\
& =u_{t}+v_{t}-u_{x x}-v_{x x} \\
& =\mathscr{L} u+\mathscr{L} v
\end{aligned}
$$

and

$$
\begin{aligned}
\mathscr{L}(c u) & =(c u)_{t}-(c u)_{x x} \\
& =c u_{t}-c u_{x x} \\
& =c \mathscr{L} u .
\end{aligned}
$$

(c) The order is three, due to the term $u_{x x t}$; it is nonlinear, as there is no term that does not depend on u and the operator

$$
f(u)=u_{t}-u_{x x t}+u u_{x}
$$

is not linear;

$$
\begin{aligned}
f(2 u) & =(2 u)_{t}-(2 u)_{x x t}+(2 u)(2 u)_{x} \\
& =2 u_{t}-2 u_{x x t}+4 u u_{x} \\
& \neq 2 u_{t}-2 u_{x x t}+2 u u_{x} \\
& =2 f(u) .
\end{aligned}
$$

(e) The order is two, due to the term $u_{x x}$; it is linear homogeneous, as the operator

$$
\mathscr{L}=i \frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}+\frac{u}{x}
$$

is linear;

$$
\begin{aligned}
\mathscr{L}(u+v) & =i(u+v)_{t}-(u+v)_{x x}+\frac{(u+v)}{x} \\
& =i u_{t}+i v_{t}-v_{x x}-u_{x x}+\frac{u}{x}+\frac{v}{x} \\
& =\mathscr{L} u+\mathscr{L} v
\end{aligned}
$$

and

$$
\begin{aligned}
\mathscr{L}(c u) & =(c i u)_{t}-(c u)_{x x}+\frac{c u}{x} \\
& =c i u_{t}-c u_{x x}+c \frac{u}{x} \\
& =c \mathscr{L} u .
\end{aligned}
$$

(h) The order is four, due to the term $u_{x x x x}$; it is nonlinear, as there is no term that does not depend on u and the operator

$$
f(u)=u_{t}+u_{x x x x}+\sqrt{1+u}
$$

is not linear;

$$
\begin{aligned}
f(2 u) & =(2 u)_{t}-(2 u)_{x x x x}+\sqrt{1+2 u} \\
& =2 u_{t}-2 u_{x x x x}+\sqrt{1+2 u} \\
& \neq 2 u_{t}-2 u_{x x x x}+2 \sqrt{1+u} \\
& =2 f(u) .
\end{aligned}
$$

1.1.4 Suppose that u_{1} and u_{2} are two solutions of the inhomogeneous linear equation

$$
\mathscr{L} u=g
$$

It follows that

$$
\mathscr{L} u_{1}=g \quad \text { and } \quad \mathscr{L} u_{2}=g .
$$

We have

$$
\begin{aligned}
\mathscr{L}\left(u_{1}-u_{2}\right) & =\mathscr{L} u_{1}+\mathscr{L}\left(-u_{2}\right) \\
& =\mathscr{L} u_{1}-\mathscr{L} u_{2} \\
& =g-g \\
& =0
\end{aligned}
$$

Thus $u_{1}-u_{2}$ is a solution of the homogeneous linear equation

$$
\mathscr{L} u=0
$$

1.1.12 Suppose that

$$
u(x, y)=\sin n x \sinh n y
$$

Then

$$
u_{x}=n \cos n x \sinh n y \quad \text { and } \quad u_{y}=n \sin n x \cosh n y
$$

It follows that

$$
u_{x x}=-n^{2} \sin n x \sinh n y \quad \text { and } \quad u_{y}=n^{2} \sin n x \sinh n y .
$$

Hence

$$
u_{x x}+u_{y y}=0,
$$

so that

$$
u(x, y)=\sin n x \sinh n y
$$

is a solution of Laplace's equation.
1.2.1 The general solution to the PDE

$$
2 u_{t}+3 u_{x}=0,
$$

is

$$
u(x, t)=\underset{3}{f}(2 x-3 t)
$$

If we impose the auxiliary condition then we get

$$
\begin{aligned}
\sin x & =u(x, 0) \\
& =f(2 x) .
\end{aligned}
$$

If we put

$$
w=2 x \quad \text { so that } \quad x=\frac{w}{2}
$$

then we get

$$
f(w)=\sin \frac{w}{2}
$$

Thus

$$
u(x, t)=\sin \left(\frac{2 x-3 t}{2}\right) .
$$

1.2.2 Let $v=u_{y}$. Then

$$
\begin{aligned}
0 & =3 u_{y}+u_{x y} \\
& =3 v+v_{x} .
\end{aligned}
$$

We have a linear equation for v,

$$
v_{x}+3 v=0 .
$$

Solving this like we would an ODE we get the general solution

$$
v(x, y)=f(y) e^{-3 x}
$$

This gives us a PDE for u,

$$
u_{y}=f(y) e^{-3 x} .
$$

This has general solution

$$
u(x, y)=F(y) e^{-3 x}+G(x)
$$

where F and G are arbitrary functions of one variable.
1.2.6 At the point (x, y) the characteristic curve has tangent vector

$$
\left(\sqrt{1-x^{2}}, 1\right)
$$

Thus the characteristic curve is a solution of the ODE

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{1-x^{2}}}
$$

The characteristic curves therefore have equation

$$
y=\arcsin x+c
$$

so that the general solution is

$$
u(x, y)=f(y-\arcsin y)
$$

where f is an arbitrary function of one variable.

If we impose the auxiliary condition then we get

$$
\begin{aligned}
y & =u(0, y) \\
& =f(y) .
\end{aligned}
$$

Thus the solution is

$$
u(x, y)=y-\arcsin (x)
$$

1.2.9 The PDE

$$
u_{x}+u_{y}=1
$$

is inhomogeneous linear. A particular solution of this PDE is $u(x, y)=$ x, as then

$$
u_{x}=1 \quad \text { and } \quad u_{y}=0
$$

The associated homogeneous linear equation

$$
u_{x}+u_{y}=0
$$

has general solution

$$
u(x, y)=f(x-y)
$$

where f is an arbitrary function of one variable. It follows that the general solution of the inhomogeneous linear equation is

$$
u(x, y)=x+f(x-y)
$$

where f is an arbitrary function of one variable.
1.3.6 The three dimensional heat equation is

$$
c \rho u_{t}=\nabla \cdot(\kappa \nabla u)
$$

We assume that κ is constant, so that the PDE reduces to

$$
u_{t}=k \Delta u
$$

If we make the axis of the cylinder the z-axis then cylindrical coordinates use the coordinates r, θ and z, where r and θ are polar coordinates for x and y :

$$
x=r \cos \theta \quad y=r \sin \theta \quad \text { and } \quad z=z
$$

By asumption $u_{z z}=0$ and $u_{\theta}=0$. It follows that

$$
\Delta u=u_{x x}+u_{y y} .
$$

We have

$$
r=\sqrt{x^{2}+y^{2}} .
$$

The chain rule gives

$$
\begin{aligned}
u_{x x} & =\left(u_{x}\right)_{x} \\
& =\left(x r^{-1} u_{r}\right)_{x} \\
& =r^{-1} u_{r}-x^{2} r^{-3} u_{r}+x^{2} r^{-2} u_{r r} .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
u_{y y} & =\left(u_{y}\right)_{y} \\
& =\left(y r^{-1} u_{r}\right)_{y} \\
& =r^{-1} u_{r}-y^{2} r^{-3} u_{r}+y^{2} r^{-2} u_{r r} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\Delta u & =u_{x x}+u_{y y} \\
& =r^{-1} u_{r}-x^{2} r^{-3} u_{r}+x^{2} r^{-3} u_{r r}+r^{-1} u_{r}-y^{2} r^{-2} u_{r}+y^{2} r^{-2} u_{r r} \\
& =2 r^{-1} u_{r}-\left(x^{2}+y^{2}\right) r^{-3} u_{r}+\left(x^{2}+y^{2}\right) r^{-2} u_{r r} \\
& =u_{r r}+r^{-1} u_{r} .
\end{aligned}
$$

Thus the heat equation reduces to

$$
u_{t}=k\left(u_{r r}+u_{r} / r\right)
$$

1.3.7 As before, we assume that κ is constant, so that the PDE for the heat equation reduces to

$$
u_{t}=k \Delta u .
$$

In spherical coordinates we have (ρ, θ, ϕ) where ρ is the distance to the origin, θ is the same angle as in cylindrical coordinates and ϕ is the angle from the z-axis. We have

$$
\rho=\sqrt{x^{2}+y^{2}+z^{2}}
$$

By asumption $u_{\theta}=0$ and $u_{\phi}=0$. We rename $\rho=r$. The chain rule gives

$$
\begin{aligned}
u_{x x} & =\left(u_{x}\right)_{x} \\
& =\left(x r^{-1} u_{r}\right)_{x} \\
& =r^{-1} u_{r}-x^{2} r^{-3} u_{r}+x^{2} r^{-2} u_{r r} .
\end{aligned}
$$

Similarly

$$
u_{y y}=r^{-1} u_{r}-y^{2} r^{-3} u_{r}+y^{2} r^{-2} u_{r r} \quad \text { and } \quad u_{z z}=r^{-1} u_{r}-z^{2} r^{-3} u_{r}+z^{2} r^{-2} u_{r r} .
$$

Therefore

$$
\begin{aligned}
\Delta u & =u_{x x}+u_{y y}+u_{z z} \\
& =r^{-1} u_{r}-x^{2} r^{-3} u_{r}+x^{2} r^{-3} u_{r r}+r^{-1} u_{r}-y^{2} r^{-2} u_{r}+y^{2} r^{-2} u_{r r}+r^{-1} u_{r}-z^{2} r^{-3} u_{r}+z^{2} r^{-2} u_{r r} \\
& =3 r^{-1} u_{r}-\left(x^{2}+y^{2}+z^{2}\right) r^{-3} u_{r}+\left(x^{2}+y^{2}+z^{2}\right) r^{-2} u_{r r} \\
& =u_{r r}+2 r^{-1} u_{r} .
\end{aligned}
$$

Thus the heat equation reduces to

$$
u_{t}=k\left(u_{r r}+2 u_{r} / r\right) .
$$

Challenge Problems: (Just for fun)
1.2.13 We want to solve

$$
u_{x}+2 u_{y}+(2 x-y) u=2 x^{2}+3 x y-2 y^{2} .
$$

We use the change of coordinates

$$
x^{\prime}=x+2 y \quad \text { and } \quad y^{\prime}=2 x-y .
$$

We have already seen in the lecture notes that

$$
u_{x}+2 u_{y}=5 u_{x^{\prime}}
$$

As

$$
(x+2 y)(2 x-y)=2 x^{2}-3 x y+y^{2} .
$$

the PDE reduces to

$$
5 u_{x^{\prime}}+y^{\prime} u=x^{\prime} y^{\prime} .
$$

This is a linear inhomogeneous equation.
We first guess a solution. We try $u\left(x^{\prime}, y^{\prime}\right)=x^{\prime}$. This is not quite right.
If we subtract $5 / y^{\prime}$ we get an exact solution

$$
u\left(x^{\prime}, y^{\prime}\right)=x^{\prime}-5 / y^{\prime}
$$

The associated homogeneous linear equation is

$$
5 u_{x^{\prime}}+y^{\prime} u=0 .
$$

Treating this like an ODE, and using separation of variables, the general solution of the homogeneous linear equation is

$$
u\left(x^{\prime}, y^{\prime}\right)=f\left(y^{\prime}\right) e^{-x^{\prime} y^{\prime} / 5}
$$

where f is an arbitrary function of one variable.
Thus the general solution to the inhomogeneous is

$$
u\left(x^{\prime}, y^{\prime}\right)=f\left(y^{\prime}\right) e^{-x^{\prime} y^{\prime} / 5}+x^{\prime}-5 / y^{\prime}
$$

Substituting for x and y we get

$$
u(x, y)=f(2 x-y) e^{-(x+2 y)(2 x-y) / 5}+x+2 y-1 /(2 x-y)
$$

is the general solution to the original PDE.
1.3.11 Recall the statement of Stokes' theorem. Let C be any closed curve and let S be any surface bounding C. Let \vec{F} be a vector field on S.

$$
\oint_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} \mathrm{~d} S .
$$

By assumption,

$$
\nabla \times \vec{v}=0
$$

so that the RHS is zero. Therefore

$$
\oint_{C} \vec{v} \cdot \mathrm{~d} \vec{r}=0
$$

for any closed curve C.
This means that we can define a scalar function $\phi(x, y, z)$ as follows. Pick a point p of space and pick a curve γ connecting the origin to this point, for example the straight line connecting the origin to this point. Define

$$
\phi(x, y, z)=\int_{\gamma} \vec{v} \cdot \mathrm{~d} \vec{r} .
$$

If we want to compute the derivative of ϕ in the $\hat{\imath}$ direction, then consider a line starting at $p=(x, y, z)$ parallel to $\hat{\imath}$.

$$
\gamma_{1}(t)=(x+t, y, z,)
$$

As the integral around any closed curve is zero, we have

$$
\phi(x+t, y, z)-\phi(x, y, z)=\int_{\gamma_{1}} \vec{v} \cdot \mathrm{~d} \vec{r} .
$$

Computing the line integral on the RHS the usual way, we get

$$
\phi_{x}=v_{1},
$$

the first component of \vec{v}.
By symmetry we have

$$
\nabla \phi=\vec{v} .
$$

