MODEL ANSWERS TO THE SECOND HOMEWORK

1.4.1. Try something of the form $u(x, t)=a t+x^{2}$. This certainly satisfies the initial condition

$$
u(x, 0)=x^{2}
$$

We have

$$
u_{t}=a \quad \text { and } \quad u_{x x}=2
$$

Thus

$$
u(t, x)=x^{2}-2 t
$$

is a solution of the diffusion equation with the correct auxiliary condition.
1.4.4. (a) With the assumption on the constants, the heat equation reduces to

$$
u_{t}=\Delta u+f(x)
$$

where

$$
f(x)= \begin{cases}0 & x<\frac{l}{2} \\ H & x>\frac{l}{2}\end{cases}
$$

The steady-state solution satisfies the additional constraint

$$
u_{t}=0
$$

The heat equation reduces further to

$$
u_{x x}=-f(x)
$$

We solve this equation on both intervals. Over the interval $0<x<l / 2$ we have the equation

$$
u_{x x}=0
$$

and this has solution

$$
u(x, t)=a x+b
$$

where a and b are constants to be determined.
Over the interval $l / 2<x<l$ we have the equation

$$
u_{x x}=-H
$$

The general solution is

$$
u(x, t)=-H x^{2} / 2+c x+d
$$

where c and d are constants to be determined.

There are four boundary conditions, what happens at the two endpoints, the condition that both solutions are equal at $l / 2$ and the condition that the heat flow matches at $l / 2$.
The two endpoints give

$$
b=0 \quad \text { and } \quad-\frac{H l^{2}}{2}+c l+d=0 .
$$

Thus

$$
d=\frac{H l^{2}}{2}-c l .
$$

Matching u at $x=l / 2$ gives

$$
\frac{a l}{2}=-\frac{H l^{2}}{8}+\frac{c l}{2}+d
$$

Matching u_{x} at $x=l / 2$ gives

$$
a=-\frac{H l}{2}+c
$$

Substituting for a and d gives an equation for c :

$$
\frac{c l}{2}-\frac{H l^{2}}{4}=-\frac{H l^{2}}{8}+\frac{c l}{2}+\frac{H l^{2}}{2}-c l .
$$

Thus

$$
c l=\frac{5 H l^{2}}{8} .
$$

It follows that

$$
c=\frac{5 H l}{8} .
$$

Thus

$$
a=\frac{H l}{8} \quad \text { and } \quad d=-\frac{H l^{2}}{8} .
$$

The solution is

$$
u(x, t)= \begin{cases}\frac{H l x}{8} & 0 \leq x \leq l / 2 \\ -\frac{H x^{2}}{2}+\frac{5 H l x}{8}-\frac{H l^{2}}{8} & l / 2 \leq x\end{cases}
$$

(b) Over the interval $0 \leq x \leq l / 2$ the maximum is at $x=l / 2$ and the maximum is

$$
\frac{H l^{2}}{16}
$$

Over the interval $l / 2 \leq x \leq l$ the maximum is at $x=5 l / 8$ and the maximum is

$$
\frac{9 H l^{2}}{128}
$$

and this is the hottest temperature, so that $x=5 l / 8$ is the hottest point.
1.5.1. The general solution to the ODE is

$$
u(x)=a \cos x+b \sin x
$$

The boundary conditions give

$$
a=0 \quad \text { and } \quad b \sin L=0 .
$$

If $\sin L \neq 0$ the second condition implies that $b=0$ and the solution is unique. But if $\sin L=0$ the second condition is vacuous and $u(x)=$ $b \sin x$ is a solution for any b.
Now $\sin L=0$ if and only if $L=n \pi$ is an integer multiple of π. Thus the solution is unique if and only if L is not an integer multiple of π. 1.5.5. The characteristic curve has equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y
$$

Thus the characteristic curves are

$$
y=C e^{x}
$$

and the general solution of the PDE is

$$
u(x, y)=f\left(e^{-x} y\right)
$$

where f is an arbitrary function of one variable.
(a) We want to choose f so that

$$
\begin{aligned}
x & =u(x, 0) \\
& =f\left(e^{-x}\right) .
\end{aligned}
$$

Let $w=e^{-x}$. Then

$$
x=-\log w
$$

and

$$
f(w)=-\log w
$$

This gives the solution

$$
u(x, y)=-\log \left(y e^{-x}\right)
$$

However the logarithm function is not defined at zero. In fact

$$
\lim _{t \rightarrow 0^{+}} \log t=-\infty
$$

and so this function does not have the correct behaviour along the boundary.
(b) We want to choose f so that

$$
\begin{aligned}
1 & =u(x, 0) \\
& =f\left(e^{-x}\right) .
\end{aligned}
$$

Let $w=e^{-x}$. Then

$$
f(w)=1
$$

Thus the solution is $u(x, y)=1$.
1.6.1. (a) We have $a_{11}=1, a_{12}=-2$ and $a_{22}=1$. It follows that

$$
\begin{aligned}
a_{12}^{2} & =4 \\
& >1 \\
& =a_{11} a_{22} .
\end{aligned}
$$

Thus we have a hyperbolic PDE.
(b) We have $a_{11}=9, a_{12}=3$ and $a_{22}=1$. It follows that

$$
\begin{aligned}
a_{12}^{2} & =9 \\
& =a_{11} a_{22} .
\end{aligned}
$$

Thus we have a parabolic PDE.
1.6.2. We have $a_{11}=1+x, a_{12}=x y$ and $a_{22}=-y^{2}$. It follows that we have a parabolic PDE when

$$
\begin{aligned}
x^{2} y^{2} & =a_{12}^{2} \\
& =a_{11} a_{22} \\
& =-(1+x) y^{2} .
\end{aligned}
$$

It follows that either $y=0$ or $x^{2}+x+1=0$. As

$$
1^{2}<4
$$

there are no real solutions to the second equation and we have a parabolic PDE if and only if $y=0$. If $y \neq 0$ then $a_{12}^{2}>a_{11} a_{22}$ and so we have a hyperbolic PDE. 2 1.6.4. We have $a_{11}=1, a_{12}=-2$ and $a_{22}=4$. It follows that

$$
\begin{aligned}
a_{12}^{2} & =4 \\
& =4 \\
& =a_{11} a_{22} .
\end{aligned}
$$

Thus we have a parabolic PDE.
Suppose that

$$
u(x, y)=f(y+2 x)+x g(y+2 x)
$$

Then
$u_{x}=2 f^{\prime}(y+2 x)+g(y+2 x)+2 x g^{\prime}(y+2 x) \quad$ and $\quad u_{y}=f^{\prime}(y+2 x)+x g^{\prime}(y+2 x)$.

It follows that

$$
\begin{aligned}
& u_{x x}=4 f^{\prime \prime}(y+2 x)+2 g^{\prime}(y+2 x)+2 g^{\prime}(y+2 x)+4 x g^{\prime \prime}(y+2 x) \\
& u_{x y}=2 f^{\prime \prime}(y+2 x)+g^{\prime}(y+2 x)+2 x g^{\prime \prime}(y+2 x) \\
& u_{y y}=f^{\prime \prime}(y+2 x)+x g^{\prime \prime}(y+2 x) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
u_{x x}-4 u_{x y}+4 u_{y y} & =(4-4 \cdot 2+4) f^{\prime \prime}(y+2 x)+(4-4) g^{\prime}(y+2 x)+(4-4 \cdot 2+4) x g^{\prime \prime}(y+2 x) \\
& =0 .
\end{aligned}
$$

1.6.5. If we put

$$
u=v e^{\alpha x+\beta y}
$$

then

$$
u_{x}=\alpha u+v_{x} e^{\alpha x+\beta y} \quad \text { and } \quad u_{y}=\beta u+v_{y} e^{\alpha x+\beta y}
$$

It follows that

$$
\begin{aligned}
& u_{x x}=\alpha^{2} u+2 \alpha v_{x} e^{\alpha x+\beta y}+v_{x x} e^{\alpha x+\beta y} \\
& u_{y y}=\beta^{2} u+2 \beta v_{y} e^{\alpha x+\beta y}+v_{y y} e^{\alpha x+\beta y} .
\end{aligned}
$$

We want to choose α and β so that the coefficients of v_{x} and v_{y} are zero:

$$
2 \alpha-2=0 \quad \text { and } \quad 6 \beta+24=0 .
$$

Thus we let

$$
\alpha=1 \quad \text { and } \quad \beta=-4 .
$$

The coefficient of v is then

$$
1+3 \cdot 4^{2}-2-24 \cdot 4+5=-44
$$

The PDE then reduces to

$$
v_{x x}+3 v_{y y}-44 v=0
$$

If we put

$$
y^{\prime}=\gamma y
$$

then

$$
\delta_{y}=\gamma \delta_{y^{\prime}}
$$

It follows that

$$
v_{y y}=\gamma^{2} v_{y^{\prime} y^{\prime}}
$$

So if we pick $\gamma=\sqrt{3}$ then we reduced to

$$
v_{x x}+v_{y^{\prime} y^{\prime}}-44 v=0 .
$$

Challenge Problems: (Just for fun)
1.4.6. (a) At equilibrium we have $u_{t}=0$ and so the heat equation reads

$$
u_{x x}=0
$$

Solving on the interval $0 \leq x \leq L_{1}$ we have

$$
u(x, t)=a x+b
$$

and on the interval $L_{1} \leq x \leq L_{1}+L_{2}$ we have

$$
u(x, t)=c x+d
$$

There are four boundary conditions, what happens at the two endpoints, and the condition that both u and the flux are continuous. As the temperature is zero at 0 we have

$$
b=u(0, t)=0 .
$$

As the temperature is T at $x=L_{1}+L_{2}$ have

$$
c\left(L_{1}+L_{2}\right)+d=T .
$$

As u is continuous at $x=L_{1}$ we have

$$
a L_{1}=c L_{1}+d
$$

As the flux is continuous at $x=L_{1}$ we must have

$$
\kappa_{1} a=\kappa_{2} c .
$$

From the second equation we get

$$
d=T-c\left(L_{1}+L_{2}\right) .
$$

Plugging this into the third equation gives

$$
T=a L_{1}+c L_{2}
$$

Multiplying through by κ_{2} and using the fourth equation gives

$$
\kappa_{2} T=\kappa_{2} a L_{1}+\kappa_{1} a L_{2}=a\left(\kappa_{2} L_{1}+\kappa_{1} L_{2}\right)
$$

It follows that

$$
a=\frac{\kappa_{2} T}{\kappa_{2} L_{1}+\kappa_{1} L_{2}} .
$$

From there we get

$$
c=\frac{\kappa_{1} T}{\kappa_{2} L_{1}+\kappa_{1} L_{2}} .
$$

It follows that

$$
d=\frac{\left(\kappa_{2}-\kappa_{1}\right) L_{1} T}{\kappa_{2} L_{1}+\kappa_{1} L_{2}}
$$

Thus

$$
u(x, t)= \begin{cases}\frac{\kappa_{2} T x}{\kappa_{2} L_{1}+\kappa_{1} L_{2}} & \text { for } 0<x<L_{1} \\ \frac{\kappa_{1} T x}{\kappa_{2} L_{1}+\kappa_{1} L_{2}}+\frac{\left(\kappa_{2}-\kappa_{1}\right) L_{1} T}{\kappa_{2} L_{1}+\kappa_{1} L_{2}} & \text { for } L_{1}<x<L_{1}+L_{2} \\ 6\end{cases}
$$

Note that we are free to replace κ by k in the formulae above, simply by dividing top and bottom of the fractions by $c \rho$.
(b) In this case we have

$$
k_{2} L_{1}+k_{1} L_{2}=1 \cdot 3+2 \cdot 1=5
$$

so that

$$
u(x, t)= \begin{cases}2 x & \text { for } 0<x<3 \\ 4 x-6 & \text { for } 3<x<5\end{cases}
$$

1.4.7. (a) By assumption

$$
\frac{\partial \vec{v}}{\partial t}+\frac{c_{0}^{2}}{\rho_{0}} \operatorname{grad} \rho=0
$$

Therefore

$$
\begin{aligned}
\frac{\partial \operatorname{curl} \vec{v}}{\partial t} & =\operatorname{curl} \frac{\partial \vec{v}}{\partial t} \\
& =-\operatorname{curl} \frac{c_{0}^{2}}{\rho_{0}} \operatorname{grad} \rho \\
& =-\frac{c_{0}^{2}}{\rho_{0}} \operatorname{curl} \operatorname{grad} \rho \\
& =-\frac{c_{0}^{2}}{\rho_{0}} \nabla \times \nabla \rho \\
& =\overrightarrow{0} .
\end{aligned}
$$

But then curl \vec{v} is constant, so that if it is zero to begin with, it is zero for all time.
(b) We have

$$
\begin{aligned}
\frac{\partial^{2} \vec{v}}{\partial t^{2}} & =-\frac{c_{0}^{2}}{\rho_{0}} \frac{\partial \operatorname{grad} \rho}{\partial t} \\
& =-\frac{c_{0}^{2}}{\rho_{0}} \operatorname{grad} \frac{\partial \rho}{\partial t} \\
& =c_{0}^{2} \operatorname{grad} \operatorname{div} \vec{v} \\
& =c_{0}^{2} \nabla \cdot \nabla \vec{v} \\
& =c_{0}^{2} \Delta \vec{v}-\Delta \times \Delta \times \vec{v} \\
& =c_{0}^{2} \Delta \vec{v} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\frac{\partial^{2} \phi}{\partial t^{2}} & =-\rho_{0} \frac{\partial \operatorname{div} \vec{v}}{\partial t} \\
& =-\rho_{0} \operatorname{div} \frac{\partial \vec{v}}{\partial t} \\
& =c_{0}^{2} \operatorname{div} \operatorname{grad} \phi \\
& =c_{0}^{2} \Delta \phi
\end{aligned}
$$

