MODEL ANSWERS TO THE THIRD HOMEWORK

2.1.1. We apply d'Alembert's formula. By assumption

$$
\phi(x)=e^{x} \quad \text { and } \quad \psi(x)=\sin x
$$

and so we get

$$
u(x, t)=\frac{1}{2}\left(e^{x+c t}+e^{x-c t}\right)+\frac{1}{2 c}(\cos (x-c t)-\cos (x+c t)) .
$$

After using some standard identities we get

$$
u(x, t)=e^{x} \cosh c t+\frac{1}{c} \sin x \sin c t .
$$

2.1.2. We apply d'Alembert's formula. By assumption

$$
\phi(x)=\log \left(1+x^{2}\right) \quad \text { and } \quad \psi(x)=4+x
$$

and so we get

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}\left(\log \left(1+(x+c t)^{2}\right)+\log \left(1+(x-c t)^{2}\right)\right)+\frac{1}{2 c}\left(1 / 2(x+c t)^{2}+4(x+c t)-1 / 2(x-c t)^{2}\right. \\
& =\frac{1}{2} \log \left(1+(x+c t)^{2}\right)\left(1+(x-c t)^{2}\right)+5 t .
\end{aligned}
$$

2.1.3. The wave speed is

$$
c=\sqrt{\frac{T}{\rho}} .
$$

The nearest point where the hammer strikes to the flea is at

$$
\frac{l}{2}-a
$$

Therefore the distance of the flea from the nearest point from where the hammer strikes is

$$
\frac{l}{4}-a
$$

The hammer causes a depression as well as imparts velocity to the string. It follows that there is a wave traveling to the left at speed c. The disturbance reaches the flea after

$$
\frac{l-4 a}{4 c}=\frac{\rho^{1 / 2}(l-4 a)}{4 T^{1 / 2}}
$$

units of time.
2.1.5. We apply d'Alembert's formula. By assumption

$$
\phi(x)=0 \quad \text { and } \quad \psi(x)= \begin{cases}1 & \text { for }|x|<a \\ 0 & \text { for }|x|>a\end{cases}
$$

Therefore

$$
\begin{aligned}
u(x, t) & =\frac{1}{2} \phi(x+c t)+\frac{1}{2} \phi(x-c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi \\
& =\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi \\
& =\frac{1}{2 c}\{\text { length of }(x-c t, x+c t) \cap(-a, a)\}
\end{aligned}
$$

since the integral is nothing more than the area under the graph of ψ, and this area is just the length of the part of $(-a, a)$ between $x-c t$ and $x+c t$.
Now suppose that

$$
t=k \cdot \frac{a}{2 c} \quad \text { where } \quad k=1,2,3,4,5 .
$$

We have

$$
x-c t=x-k \frac{a}{2}
$$

and so

$$
u(x, t)=\frac{1}{2 c}\left\{\text { length of }\left(x-k \frac{a}{2}, x+k \frac{a}{2}\right) \cap(-a, a)\right\} .
$$

2.1.9. We have

$$
\begin{aligned}
u_{x x}-3 u_{x t}-4 u_{t t} & =\partial_{x}^{2} u-3 \partial_{x} \partial_{t} u-4 \partial_{t}^{2} u \\
& =\left(\partial_{x}^{2}-3 \partial_{x} \partial_{t}-4 \partial_{t}^{2}\right) u \\
& =\left(\partial_{x}-4 \partial_{t}\right)\left(\partial_{t}+\partial_{t}\right) u
\end{aligned}
$$

Therefore we have to solve

$$
v_{x}-4 v_{t}=0 \quad \text { where } \quad v=u_{x}+u_{t} .
$$

The first equation has general solution

$$
v(x, t)=h(4 x+t),
$$

where h is an arbitrary differentiable function of one variable. Therefore we now just need to solve

$$
u_{x}+u_{t}=h(4 x+t)
$$

A particular solution is given by

$$
u(x, t)=f_{2}(4 x+t)
$$

where

$$
f^{\prime}=h / 5 .
$$

The associated homogeneous equation is

$$
u_{x}+u_{t}=0 .
$$

This has general solution

$$
u(x, t)=g(x-t) .
$$

Thus the general solution to the original inhomogeneous equation is

$$
u(x, t)=f(4 x+t)+g(x-t)
$$

where f and g are arbitrary twice differentiable functions. It is expedient to make a slightly different choice of f and rewrite this as

$$
u(x, t)=f(x+t / 4)+g(x-t)
$$

We now want to choose f and g such that

$$
f(x)+g(x)=x^{2} \quad \text { and } \quad f^{\prime}(x) / 4-g^{\prime}(x)=e^{x} .
$$

Differentiating the first and replacing x by y, we get

$$
f^{\prime}(y)+g^{\prime}(y)=2 y \quad \text { and } \quad f^{\prime}(y) / 4-g^{\prime}(y)=e^{y} .
$$

Adding and subtracting we get

$$
\frac{5}{4} f^{\prime}(y)=2 y+e^{y} \quad \text { and } \quad 5 g(y)=2 y-4 e^{y} .
$$

It follows that

$$
f(y)=\frac{4}{5}\left(y^{2}+e^{y}\right) \quad \text { and } \quad g(y)=\frac{1}{5}\left(y^{2}-4 e^{y}\right) .
$$

Substituting for $4 x+t$ and $x-t$ we get
$f(x+t / 4)=\frac{4}{5}\left((x+t / 4)^{2}+e^{x+t / 4}\right) \quad$ and $\quad g(x-t)=\frac{1}{5}\left((x-t)^{2}-4 e^{x-t}\right)$.
Thus the solution to the PDE with auxiliary conditions is

$$
\begin{aligned}
u(x, t) & =\frac{4}{5}\left((x+t / 4)^{2}+e^{x+t / 4}\right)+\frac{1}{5}\left((x-t)^{2}-4 e^{x-t}\right) \\
& =\frac{4}{5}\left(e^{x+t / 4}-e^{x-t}\right)+x^{2}+\frac{1}{4} t^{2} .
\end{aligned}
$$

Challenge Problems: (Just for fun)
2.1.8. (a) Let $v=r u$. Then

$$
v_{r}=r u_{r}+u \quad \text { and so } \quad v_{r r}=r u_{r r}+2 u_{r} .
$$

On the other hand

$$
v_{t t}=r u_{t t}
$$

It follows that

$$
\begin{aligned}
v_{t t} & =r u_{t t} \\
& =c^{2}\left(r u_{r r}+2 u_{r}\right) \\
& =c^{2} v_{r r} .
\end{aligned}
$$

(b) The general solution of the wave equation for v is

$$
v(r, t)=f(r+c t)+g(r-c t)
$$

where f and g are two arbitrary twice differentiable functions of one variable. It follows that the general solution of the spherical wave equation is

$$
u(x, t)=r f(r+c t)+r g(r-c t)
$$

where f and g are two arbitrary twice differentiable functions of one variable.
(c) We use d'Alembert's formula for v. We are given

$$
v(r, 0)=r \phi(r) \quad \text { and } \quad v_{t}(r, 0)=r \psi(r)
$$

Thus

$$
\begin{aligned}
u(r, t) & =\frac{1}{r} v(r, t) \\
& =\frac{1}{2} \phi(r+c t)+\frac{1}{2} \phi(r-c t)+\frac{1}{2 r c} \int_{r-c t}^{r+c t} r \psi .
\end{aligned}
$$

