
MODEL ANSWERS TO THE FOURTH HOMEWORK

2.2.3. By assumption

utt = c2uxx.

(a) If v(x, t) = u(x− y, t) then

vtt = utt(x− y, t)
= c2uxx(x− y, t)
= c2vxx.

(b) If v = ux then

vtt = uttx

= uxtt

= c2uxxx

= c2vxx.

(c) If v = u(ax, at) then

vtt = a2utt(ax, at)

= a2c2uxx(ax, at)

= c2a2uxx(ax, at)

= c2vxx.

2.2.5. The relevant PDE is

ρutt − Tuxx + rut = 0,

where r is a positive constant. We write down the derivative of the
kinetic energy and of the potential energy with respect to time and we
try to compare them. We have

KE =
1

2
ρ

∫
u2t dx and PE =

1

2
T

∫
u2x dx.
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We have

d KE

dt
=

d

dt

(
1

2
ρ

∫
u2t dx

)
= ρ

∫
ututt dx

= T

∫
utuxx dx− r

∫
u2t dx

= Tutux − T
∫
utxux dx− rd KE

dt
.

Here we differentiated under the integral sign, replaced ρutt by Tuxx
and finally we applied integration by parts.
The first term on the last line vanishes as it is evaluated at the two
endpoints∞ and −∞, where it is zero. The second term is a derivative:

utxux =
d(1

2
u2x)

dt
.

Its integral is the derivative of potential energy. Then

dE

dt
=

d(KE + PE)

dt

=
d KE

dt
+

d PE

dt
− rd KE

dt

= −rd KE

dt
< 0.

Thus the total energy

E =
1

2

∫ ∞
−∞

(ρu2t + Tu2x) dx

is deceasing.
2.3.3. (a) The minimum of u(x, t) on the three sides is 0 and u(x, t)
is certainly not constant and so by the strong maximum principle
u(x, t) > 0 for 0 < x < 1 and 0 < t <∞.
(b) We use the hint. Suppose that the maximum occurs at X(t). By
what we just proved 0 < X(t) < 1. We have

µ(t) = u(X(t), t).
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We now differentiate with respect to t:

dµ

dt
=

dX

dt
· ux(X(t), t) + ut(X(t), t)

=
dX

dt
· 0 + ut(X(t), t)

≤ 0.

Here we used the fact that ux is zero at a critical point and the fact that
ut ≤ 0 by the maximum principle. It follows that µ(t) is decreasing.
(c)
2.3.4. (a) The minimum of u(x, t) on the three sides is 0 and u(x, t)
is certainly not constant and so by the strong maximum principle
u(x, t) > 0 for 0 < x < 1 and 0 < t <∞.
(b) Let

v(x, t) = u(1− x, t).

Then

vt = ut(1− x, t) and vxx = uxx(1− x, t)

(as two wrongs make a right). It follows that v is a solution to the
diffusion equation. But for the initial condition, we have

u(1− x, 0) = 4(1− x)(1− (1− x))

= 4x(1− x)

= u(x, 0).

Thus v is a solution to the diffusion equation with the same initial
conditions as u. By uniqueness, v(x, t) = u(x, t), so that

u(x, t) = u(1− x, t).

(c) We multiply the diffusion equation by u

0 = 0 · u
= (ut − kuxx)u

= utu− kuxxu

=
1

2
(u2)t − (kuxu)x + ku2x.

If we integrate over the interval 0 < x < 1 then we get∫ 1

0

1

2
(u2)t dx−

[
kuxu

]1
0

+

∫ 1

0

ku2x dx.
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The middle term is zero, because of the boundary conditions and so
we get

d

dt

∫ 1

0

1

2
u2 dx = −

∫ 1

0

ku2x dx < 0.

Note that u(x, t) > 0 for 0 < x < 1 and yet u(0, t) = u(1, t) = 0 so
that the last integral is not zero. Thus∫ 1

0

u2 dx

is strictly decreasing.
2.3.7. (a) We may assume that t ≤ T , since it is enough to prove that
u ≤ v for T for arbitrarily large.
Look at the difference w = v − u. If h = g − f then h ≥ 0 and w
satisfies

wt − kwxx = h.

Further w ≥ 0 at t = 0, x = 0 and x = l.
Suppose that w < 0 somewhere. Then the minimum is not on the three
sides t = 0, x = 0 and x = l. Then the same is true of r(x, t) = w−εx2,
for some ε > 0.
We look for the minimum point (x0, t0) of r. It must either be inside
the rectangle or along the side t = T . As we saw in lectures, this
implies that rt(x0, t0) ≤ 0 (at a critical point we get zero and even if
t0 = T we get the inequality). On the other hand, rxx(x0, t0) ≥ 0 at a
minimum.
Thus

rt(x0, t0)− rxx(x0, t0) ≤ 0.

Now

rt = wt and rxx = wxx − 2ε.

It follows that

rt − krxx = wt − kwxx + 2kε

= 2kε

> 0.

As this is not possible, we must have w ≥ 0 everywhere.
It follows that u ≤ v.
(b) Let u(x, t) = (1− e−t) sinx. Then

ut = −e−t sinx = uxx − sinx

Thus u(x, t) is a solution of the PDE

ut − uxx = sinx.
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with initial and boundary conditions

u(x, 0) = sinx u(0, t) = 0 and u(l, π) = 0.

Thus u ≤ v for t = 0, x = 0 and x = π.
It follows that u ≤ v so that

v(x, t) ≥ (1− e−t) sinx.

2.3.8. We multiply the diffusion equation by u

0 = 0 · u
= (ut − kuxx)u

= utu− kuxxu

=
1

2
(u2)t − (kuxu)x + ku2x.

If we integrate over the interval 0 < x < l then we get∫ l

0

1

2
(u2)t dx−

[
kuxu

]l
0

+

∫ l

0

ku2x dx.

Now the boundary conditions contribute to the middle term. We have[
kuxu

]l
0

= ku(l, t)ux(l, t)− ku(0, t)ux(0, t)

= kalu
2(l, t)− ka0u2(0, t)

≥ 0,

with equality if and only if u(0, t) = u(l, t) = 0. By the Robin boundary
condition this would also imply that ux(0, t) = ux(l, t) = 0.
As usual the first term is the derivative of∫ 1

0

u2 dx

and so the Robin boundary contributes to the decrease of this integral.

Challenge Problems: (Just for fun)

4. 2.2.6. (a) We have

utt = α(r)f ′′(t− β(r))

and
ur = α′(r)f(t− β(r))− α(r)β′(r)f ′(t− β(r))

so that

urr = α′′(r)f(t−β(r))−2α′(r)β′(r)f ′(t−β(r))−α(r)β′′(r)f ′(t−β(r))+α(r)(β′(r))2f ′′(t−β(r))

This gives an ODE for f .
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(b) We get

α(r) = c2α(r)(β′(r))2 −2α′(r)β′(r)−α(r)β′′(r)−n− 1

r
α(r)β′(r) = 0 α′′(r)+

n− 1

r
α′(r) = 0.

The first equation implies that

β′(r) =
1

c
.

Thus β′′(r) = 0. These equations reduce to

2α′(r) +
n− 1

r
α(r) = 0 and α′′(r) +

n− 1

r
α′(r) = 0.

(c) Separating variables in the first equation we get

1

α
dα = −n− 1

2r
dr.

Integrating both sides, we get

logα = log r(1−n)/2 + C.

Thus
α =

c

r(n−1)/2

for some constant c.
Assume that n 6= 1.
Plugging this into the second equation gives

c(n− 1)(n+ 1)

4r(n+3)/2
− c(n− 1)2

2r(n+3)/2
= 0.

Assuming c 6= 0
(n+ 1)− 2(n− 1) = 0.

This gives
n = 3.

(d) As

α =
c

r(n−1)/2

if n = 1 then α is constant.
5. 2.3.5. (a) Suppose that

u(x, t) = −2xt− x2.
Then

ut = −2x and uxx = −2.

so that

ut − xuxx = −2x− x(−2)

= 0.
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By standard calculus, the maximum is either in the interior, at a critical
point, or on the boundary.
The critical points are where both derivatives are zero,

−2x = 0 and − 2x− 2t = 0.

Thus x = 0 and t = 0.
Note that

u(0, 0) = 0.

The boundary is enclosed by the four lines

x = ±2 t = 0 and t = 1.

We get four functions

u(−2, t) = 4t−4 u(2, t) = −4t−4 u(x, 0) = −x2 and u(x, 1) = −2x−x2.
The maximum of the first three functions is 0, at t = 1, −4 at t = 0
and 0 at x = 0 but the maximum of the last is 1 and this is achieved
at x = −1.
So the maximum value of u is 1 and this is achieved at (−1, 1).
(b) At the maximum, we have ut(−1, 1) = 2 > 0 and uxx(−1, 1) =
−2 < 0 but this does not violate the equality

ut − xuxx = 0,

as it would if u were a solution of the diffusion equation.
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