MODEL ANSWERS TO THE FOURTH HOMEWORK

2.2.3. By assumption

$$
u_{t t}=c^{2} u_{x x} \text {. }
$$

(a) If $v(x, t)=u(x-y, t)$ then

$$
\begin{aligned}
v_{t t} & =u_{t t}(x-y, t) \\
& =c^{2} u_{x x}(x-y, t) \\
& =c^{2} v_{x x} .
\end{aligned}
$$

(b) If $v=u_{x}$ then

$$
\begin{aligned}
v_{t t} & =u_{t t x} \\
& =u_{x t t} \\
& =c^{2} u_{x x x} \\
& =c^{2} v_{x x} .
\end{aligned}
$$

(c) If $v=u(a x, a t)$ then

$$
\begin{aligned}
v_{t t} & =a^{2} u_{t t}(a x, a t) \\
& =a^{2} c^{2} u_{x x}(a x, a t) \\
& =c^{2} a^{2} u_{x x}(a x, a t) \\
& =c^{2} v_{x x} .
\end{aligned}
$$

2.2.5. The relevant PDE is

$$
\rho u_{t t}-T u_{x x}+r u_{t}=0,
$$

where r is a positive constant. We write down the derivative of the kinetic energy and of the potential energy with respect to time and we try to compare them. We have

$$
\mathrm{KE}=\frac{1}{2} \rho \int u_{t}^{2} \mathrm{~d} x \quad \text { and } \quad \mathrm{PE}=\frac{1}{2} T \int u_{x}^{2} \mathrm{~d} x
$$

We have

$$
\begin{aligned}
\frac{\mathrm{d} \mathrm{KE}}{\mathrm{~d} t} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{2} \rho \int u_{t}^{2} \mathrm{~d} x\right) \\
& =\rho \int u_{t} u_{t t} \mathrm{~d} x \\
& =T \int u_{t} u_{x x} \mathrm{~d} x-r \int u_{t}^{2} \mathrm{~d} x \\
& =T u_{t} u_{x}-T \int u_{t x} u_{x} \mathrm{~d} x-r \frac{\mathrm{~d} \mathrm{KE}}{\mathrm{~d} t}
\end{aligned}
$$

Here we differentiated under the integral sign, replaced $\rho u_{t t}$ by $T u_{x x}$ and finally we applied integration by parts.
The first term on the last line vanishes as it is evaluated at the two endpoints ∞ and $-\infty$, where it is zero. The second term is a derivative:

$$
u_{t x} u_{x}=\frac{\mathrm{d}\left(\frac{1}{2} u_{x}^{2}\right)}{\mathrm{d} t}
$$

Its integral is the derivative of potential energy. Then

$$
\begin{aligned}
\frac{\mathrm{d} E}{\mathrm{~d} t} & =\frac{\mathrm{d}(\mathrm{KE}+\mathrm{PE})}{\mathrm{d} t} \\
& =\frac{\mathrm{d} \mathrm{KE}}{\mathrm{~d} t}+\frac{\mathrm{dPE}}{\mathrm{~d} t}-r \frac{\mathrm{~d} \mathrm{KE}}{\mathrm{~d} t} \\
& =-r \frac{\mathrm{dKE}}{\mathrm{~d} t} \\
& <0 .
\end{aligned}
$$

Thus the total energy

$$
\mathrm{E}=\frac{1}{2} \int_{-\infty}^{\infty}\left(\rho u_{t}^{2}+T u_{x}^{2}\right) \mathrm{d} x
$$

is deceasing.
2.3.3. (a) The minimum of $u(x, t)$ on the three sides is 0 and $u(x, t)$ is certainly not constant and so by the strong maximum principle $u(x, t)>0$ for $0<x<1$ and $0<t<\infty$.
(b) We use the hint. Suppose that the maximum occurs at $X(t)$. By what we just proved $0<X(t)<1$. We have

$$
\mu(t)=\underset{2}{u}(X(t), t) .
$$

We now differentiate with respect to t :

$$
\begin{aligned}
\frac{\mathrm{d} \mu}{\mathrm{~d} t} & =\frac{\mathrm{d} X}{\mathrm{~d} t} \cdot u_{x}(X(t), t)+u_{t}(X(t), t) \\
& =\frac{\mathrm{d} X}{\mathrm{~d} t} \cdot 0+u_{t}(X(t), t) \\
& \leq 0
\end{aligned}
$$

Here we used the fact that u_{x} is zero at a critical point and the fact that $u_{t} \leq 0$ by the maximum principle. It follows that $\mu(t)$ is decreasing. (c)
2.3.4. (a) The minimum of $u(x, t)$ on the three sides is 0 and $u(x, t)$ is certainly not constant and so by the strong maximum principle $u(x, t)>0$ for $0<x<1$ and $0<t<\infty$.
(b) Let

$$
v(x, t)=u(1-x, t) .
$$

Then

$$
v_{t}=u_{t}(1-x, t) \quad \text { and } \quad v_{x x}=u_{x x}(1-x, t)
$$

(as two wrongs make a right). It follows that v is a solution to the diffusion equation. But for the initial condition, we have

$$
\begin{aligned}
u(1-x, 0) & =4(1-x)(1-(1-x)) \\
& =4 x(1-x) \\
& =u(x, 0)
\end{aligned}
$$

Thus v is a solution to the diffusion equation with the same initial conditions as u. By uniqueness, $v(x, t)=u(x, t)$, so that

$$
u(x, t)=u(1-x, t)
$$

(c) We multiply the diffusion equation by u

$$
\begin{aligned}
0 & =0 \cdot u \\
& =\left(u_{t}-k u_{x x}\right) u \\
& =u_{t} u-k u_{x x} u \\
& =\frac{1}{2}\left(u^{2}\right)_{t}-\left(k u_{x} u\right)_{x}+k u_{x}^{2} .
\end{aligned}
$$

If we integrate over the interval $0<x<1$ then we get

$$
\int_{0}^{1} \frac{1}{2}\left(u^{2}\right)_{t} \mathrm{~d} x-\left[k u_{x} u\right]_{0}^{1}+\int_{0}^{1} k u_{x}^{2} \mathrm{~d} x .
$$

The middle term is zero, because of the boundary conditions and so we get

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{1} \frac{1}{2} u^{2} \mathrm{~d} x=-\int_{0}^{1} k u_{x}^{2} \mathrm{~d} x<0
$$

Note that $u(x, t)>0$ for $0<x<1$ and yet $u(0, t)=u(1, t)=0$ so that the last integral is not zero. Thus

$$
\int_{0}^{1} u^{2} \mathrm{~d} x
$$

is strictly decreasing.
2.3.7. (a) We may assume that $t \leq T$, since it is enough to prove that $u \leq v$ for T for arbitrarily large.
Look at the difference $w=v-u$. If $h=g-f$ then $h \geq 0$ and w satisfies

$$
w_{t}-k w_{x x}=h .
$$

Further $w \geq 0$ at $t=0, x=0$ and $x=l$.
Suppose that $w<0$ somewhere. Then the minimum is not on the three sides $t=0, x=0$ and $x=l$. Then the same is true of $r(x, t)=w-\epsilon x^{2}$, for some $\epsilon>0$.
We look for the minimum point $\left(x_{0}, t_{0}\right)$ of r. It must either be inside the rectangle or along the side $t=T$. As we saw in lectures, this implies that $r_{t}\left(x_{0}, t_{0}\right) \leq 0$ (at a critical point we get zero and even if $t_{0}=T$ we get the inequality). On the other hand, $r_{x x}\left(x_{0}, t_{0}\right) \geq 0$ at a minimum.
Thus

$$
r_{t}\left(x_{0}, t_{0}\right)-r_{x x}\left(x_{0}, t_{0}\right) \leq 0 .
$$

Now

$$
r_{t}=w_{t} \quad \text { and } \quad r_{x x}=w_{x x}-2 \epsilon
$$

It follows that

$$
\begin{aligned}
r_{t}-k r_{x x} & =w_{t}-k w_{x x}+2 k \epsilon \\
& =2 k \epsilon \\
& >0
\end{aligned}
$$

As this is not possible, we must have $w \geq 0$ everywhere.
It follows that $u \leq v$.
(b) Let $u(x, t)=\left(1-e^{-t}\right) \sin x$. Then

$$
u_{t}=-e^{-t} \sin x=u_{x x}-\sin x
$$

Thus $u(x, t)$ is a solution of the PDE

$$
u_{t}-u_{x x}=\sin x .
$$

with initial and boundary conditions

$$
u(x, 0)=\sin x \quad u(0, t)=0 \quad \text { and } \quad u(l, \pi)=0
$$

Thus $u \leq v$ for $t=0, x=0$ and $x=\pi$.
It follows that $u \leq v$ so that

$$
v(x, t) \geq\left(1-e^{-t}\right) \sin x
$$

2.3.8. We multiply the diffusion equation by u

$$
\begin{aligned}
0 & =0 \cdot u \\
& =\left(u_{t}-k u_{x x}\right) u \\
& =u_{t} u-k u_{x x} u \\
& =\frac{1}{2}\left(u^{2}\right)_{t}-\left(k u_{x} u\right)_{x}+k u_{x}^{2} .
\end{aligned}
$$

If we integrate over the interval $0<x<l$ then we get

$$
\int_{0}^{l} \frac{1}{2}\left(u^{2}\right)_{t} \mathrm{~d} x-\left[k u_{x} u\right]_{0}^{l}+\int_{0}^{l} k u_{x}^{2} \mathrm{~d} x .
$$

Now the boundary conditions contribute to the middle term. We have

$$
\begin{aligned}
{\left[k u_{x} u\right]_{0}^{l} } & =k u(l, t) u_{x}(l, t)-k u(0, t) u_{x}(0, t) \\
& =k a_{l} u^{2}(l, t)-k a_{0} u^{2}(0, t) \\
& \geq 0
\end{aligned}
$$

with equality if and only if $u(0, t)=u(l, t)=0$. By the Robin boundary condition this would also imply that $u_{x}(0, t)=u_{x}(l, t)=0$.
As usual the first term is the derivative of

$$
\int_{0}^{1} u^{2} \mathrm{~d} x
$$

and so the Robin boundary contributes to the decrease of this integral.
Challenge Problems: (Just for fun)
4. 2.2.6. (a) We have

$$
u_{t t}=\alpha(r) f^{\prime \prime}(t-\beta(r))
$$

and

$$
u_{r}=\alpha^{\prime}(r) f(t-\beta(r))-\alpha(r) \beta^{\prime}(r) f^{\prime}(t-\beta(r))
$$

so that
$u_{r r}=\alpha^{\prime \prime}(r) f(t-\beta(r))-2 \alpha^{\prime}(r) \beta^{\prime}(r) f^{\prime}(t-\beta(r))-\alpha(r) \beta^{\prime \prime}(r) f^{\prime}(t-\beta(r))+\alpha(r)\left(\beta^{\prime}(r)\right)^{2} f^{\prime \prime}(t-\beta(r))$
This gives an ODE for f.
(b) We get
$\alpha(r)=c^{2} \alpha(r)\left(\beta^{\prime}(r)\right)^{2} \quad-2 \alpha^{\prime}(r) \beta^{\prime}(r)-\alpha(r) \beta^{\prime \prime}(r)-\frac{n-1}{r} \alpha(r) \beta^{\prime}(r)=0 \quad \alpha^{\prime \prime}(r)+\frac{n-1}{r} \alpha^{\prime}(r)=0$.
The first equation implies that

$$
\beta^{\prime}(r)=\frac{1}{c} .
$$

Thus $\beta^{\prime \prime}(r)=0$. These equations reduce to

$$
2 \alpha^{\prime}(r)+\frac{n-1}{r} \alpha(r)=0 \quad \text { and } \quad \alpha^{\prime \prime}(r)+\frac{n-1}{r} \alpha^{\prime}(r)=0 .
$$

(c) Separating variables in the first equation we get

$$
\frac{1}{\alpha} \mathrm{~d} \alpha=-\frac{n-1}{2 r} \mathrm{~d} r .
$$

Integrating both sides, we get

$$
\log \alpha=\log r^{(1-n) / 2}+C
$$

Thus

$$
\alpha=\frac{c}{r^{(n-1) / 2}}
$$

for some constant c.
Assume that $n \neq 1$.
Plugging this into the second equation gives

$$
\frac{c(n-1)(n+1)}{4 r^{(n+3) / 2}}-\frac{c(n-1)^{2}}{2 r^{(n+3) / 2}}=0 .
$$

Assuming $c \neq 0$

$$
(n+1)-2(n-1)=0
$$

This gives

$$
n=3 .
$$

(d) As

$$
\alpha=\frac{c}{r^{(n-1) / 2}}
$$

if $n=1$ then α is constant.
5. 2.3.5. (a) Suppose that

$$
u(x, t)=-2 x t-x^{2}
$$

Then

$$
u_{t}=-2 x \quad \text { and } \quad u_{x x}=-2 .
$$

so that

$$
\begin{aligned}
u_{t}-x u_{x x} & =-2 x-x(-2) \\
& =0 .
\end{aligned}
$$

By standard calculus, the maximum is either in the interior, at a critical point, or on the boundary.
The critical points are where both derivatives are zero,

$$
-2 x=0 \quad \text { and } \quad-2 x-2 t=0
$$

Thus $x=0$ and $t=0$.
Note that

$$
u(0,0)=0
$$

The boundary is enclosed by the four lines

$$
x= \pm 2 \quad t=0 \quad \text { and } \quad t=1 .
$$

We get four functions
$u(-2, t)=4 t-4 \quad u(2, t)=-4 t-4 \quad u(x, 0)=-x^{2} \quad$ and $\quad u(x, 1)=-2 x-x^{2}$.
The maximum of the first three functions is 0 , at $t=1,-4$ at $t=0$ and 0 at $x=0$ but the maximum of the last is 1 and this is achieved at $x=-1$.
So the maximum value of u is 1 and this is achieved at $(-1,1)$.
(b) At the maximum, we have $u_{t}(-1,1)=2>0$ and $u_{x x}(-1,1)=$ $-2<0$ but this does not violate the equality

$$
u_{t}-x u_{x x}=0,
$$

as it would if u were a solution of the diffusion equation.

