MODEL ANSWERS TO THE FIFTH HOMEWORK

2.4.1. Note that $Q(x, t)$ is a solution to the diffusion equation with $Q(x, 0)=H(x)$. This jumps from zero to one at $x=0 . \phi(x)$ jumps from 0 to 1 at $x=-l$ and then jumps from 1 to 0 at $x=l$.
Now

$$
H(x+l)= \begin{cases}1 & \text { for } x>-l \\ 0 & \text { for } x<-l\end{cases}
$$

This is almost correct, we just want to adjust this function so that it jumps down at $x=l$.

$$
H(x-l)= \begin{cases}1 & \text { for } x>l \\ 0 & \text { for } x<l\end{cases}
$$

Thus

$$
\phi(x)=H(x+l)-H(x-l) .
$$

$Q(x+l, t)$ is a solution to the diffusion equation with initial conditions $H(x+l$ and $Q(x-l, t)$ is a solution to the diffusion equation with initial conditions $H(x-l)$.
It follows that $Q(x+l, t)-Q(x-l, t)$ is a solution to the diffusion equation with initial condition $H(x+l)-H(x-l)=\phi(x)$.
Now

$$
Q(x, t)=\frac{1}{2}+\frac{1}{2} \mathscr{E} \operatorname{rf}\left(\frac{x}{\sqrt{4 k t}}\right) .
$$

Thus

$$
Q(x+l, t)-Q(x-l, t)=\frac{1}{2}\left(\mathscr{E} \mathrm{rf}\left(\frac{x+l}{\sqrt{4 k t}}\right)-\mathscr{E} \mathrm{rf}\left(\frac{x-l}{\sqrt{4 k t}}\right)\right) .
$$

2.4.9. $u_{x x x}$ is a solution to the diffusion equation, as any derivative of a solution is a solution. As $u(x, 0)=x^{2}$, we have $u_{x}(x, 0)=2 x$, $u_{x x}(x, 0)=2$ and $u_{x x x}(x, 0)=0$. By uniqueness, it follows that $u_{x x x}(x, t)=0$. If we integrate thrice we get

$$
u(x, t)=A(t) x^{2}+B(t) x+C(t)
$$

In this case

$$
u_{t}=A^{\prime}(t) x^{2}+B^{\prime}(t) x+C^{\prime}(t) \quad \text { and } \quad u_{x x}=2 A(t) .
$$

As u is a solution of the diffusion equation we get

$$
A^{\prime}(t) x^{2}+B^{\prime}(t) x+C^{\prime}(t)=2 k A(t) .
$$

It follows that $A^{\prime}(t)=B^{\prime}(t)=0$ and $C^{\prime}(t)=2 A(t)$. From the first two equations we deduce that $A(t)=a$ and $B(t)=b$ are constants. If we plug in $t=0$ we see that $a=1$ and $b=0$. From the equation $C^{\prime}(t)=2 k$ we see that $C(t) 2=2 k t+c$ and from the initial condition we see that $c=0$.
Thus

$$
u(x, t)=x^{2}+2 k t
$$

is a solution to the diffusion equation such that $u(x, 0)=x^{2}$.
2.4.10. (a) The general formula says that

$$
u(x, t)=\frac{1}{2 \sqrt{\pi k t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 k t} y^{2} \mathrm{~d} y
$$

If we let

$$
p=\frac{x-y}{\sqrt{4 k t}} \quad \text { then } \quad \mathrm{d} p=-\frac{\mathrm{d} y}{\sqrt{4 k t}} .
$$

and

$$
y^{2}=(x-\sqrt{4 k t} p)^{2} .
$$

So the integral becomes

$$
u(x, t)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-p^{2}}(x-\sqrt{4 k t} p)^{2} \mathrm{~d} p .
$$

(b) If we expand the square in the integral, we get three terms,

$$
x^{2}-2 \sqrt{4 k t} p x+4 k t p^{2} .
$$

Now consider what happens when we integrate. For the first term we can pull out x^{2} and the resulting integral

$$
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-p^{2}} \mathrm{~d} p=1
$$

It follows that the coefficient of x^{2} is one, as expected. As p is odd and $e^{-p^{2}}$ is even, $p e^{-p^{2}}$ is odd and so the integral of the second term is zero. Hence the coefficient of x is zero. Thus

$$
u(x, t)=x^{2}+\frac{4 k t}{\sqrt{\pi}} \int_{-\infty}^{\infty} p^{2} e^{-p^{2}} \mathrm{~d} p
$$

Comparing we must have

$$
\int_{-\infty}^{\infty} p^{2} e^{-p^{2}} \mathrm{~d} p=\frac{\sqrt{\pi}}{2} .
$$

2.4.11. (a) Consider $v(x, t)=u(x, t)+u(-x, t)$. By linearity v is a solution of the diffusion equation. We have

$$
\begin{aligned}
v(x, 0) & =u(x, 0)+u(-x, 0) \\
& =\phi(x)+\phi(-x) \\
& =0 .
\end{aligned}
$$

Thus v is a solution to the diffusion equation such that $v(x, 0)$ is identically zero. Another such function is the function which is identically zero. By uniqueness v is identically zero.
But then

$$
u(x, t)+u(-x, t)=0
$$

so that u is odd.
(b) Consider $v(x, t)=u(x, t)-u(-x, t)$. By linearity v is a solution of the diffusion equation. We have

$$
\begin{aligned}
v(x, 0) & =u(x, 0)-u(-x, 0) \\
& =\phi(x)-\phi(-x) \\
& =0 .
\end{aligned}
$$

Thus v is a solution to the diffusion equation such that $v(x, 0)$ is identically zero. Another such function is the function which is identically zero. By uniqueness v is identically zero.
But then

$$
u(x, t)-u(-x, t)=0
$$

so that u is even.
(c) For the wave equation we need that both $\phi(x)$ and $\psi(x)$ are odd (respectively even).
Consider $v(x, t)=u(x, t) \pm u(-x, t)$. By linearity v is a solution of the diffusion equation. We have

$$
\begin{aligned}
v(x, 0) & =u(x, 0) \pm u(-x, 0) \\
& =\phi(x) \pm \phi(-x) \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
v_{t}(x, 0) & =u_{t}(x, 0) \pm u_{t}(-x, 0) \\
& =\psi(x) \pm \psi(-x) \\
& =0
\end{aligned}
$$

Thus v is a solution to the diffusion equation such that both $v(x, 0)$ and $v_{t}(x, 0)$ are identically zero. Another such function is the function which is identically zero. By uniqueness v is identically zero.

But then

$$
u(x, t) \pm u(-x, t)=0
$$

so that u is odd (respectively even).
2.4.12. (a)

$$
Q(x, t)=\frac{1}{2}+\frac{1}{2} \mathscr{E} \mathrm{rf}\left(\frac{x}{\sqrt{4 k t}}\right)
$$

(b) We have

$$
e^{z}=1+z+\frac{1}{2} z^{2}+\frac{1}{6} z^{3}+\cdots+\frac{1}{n!} z^{n}+\ldots
$$

Thus

$$
e^{-y^{2}}=1-y^{2}+\frac{1}{2} y^{4}-\frac{1}{6} y^{6}+\cdots+(-1)^{n} \frac{1}{n!} y^{2 n}+\ldots
$$

It follows that

$$
\int e^{-y^{2}} \mathrm{~d} y=y-\frac{1}{3} y^{3}+\frac{1}{10} y^{5}-\frac{1}{42} y^{7}+\cdots+(-1)^{n} \frac{1}{(2 n+1) n!} y^{2 n+1}+\ldots
$$

It follows that

$$
Q(x, t)=\frac{1}{2}+\frac{1}{2} \frac{x}{\sqrt{4 k t}}-\frac{1}{6}\left(\frac{x}{\sqrt{4 k t}}\right)^{3}+\frac{1}{20}\left(\frac{x}{\sqrt{4 k t}}\right)^{5}+\cdots+(-1)^{n} \frac{1}{2(2 n+1) n!}\left(\frac{x}{\sqrt{4 k t}}\right)^{2 n+1}+\ldots
$$

(c) We have

$$
Q(x, t) \approx \frac{1}{2}+\frac{1}{2} \frac{x}{\sqrt{4 k t}} .
$$

(d) If x is fixed and t is large then

$$
y=\frac{x}{\sqrt{4 k t}}
$$

is small and then the Taylor series is a good approximation.
2.4.18. Consider the change of variable $y=x-V t, s=t$. We have

$$
\delta_{x}=\delta_{y} \quad \text { and } \quad \delta_{s}=-V \delta_{y}+\delta_{t}
$$

It follows that

$$
u_{t}-k u_{x x}+V u_{x}=u_{s}-k u_{y y} .
$$

The second equation is the diffusion equation and it has solution

$$
u(y, s)=\frac{1}{2 \sqrt{\pi k s}} \int_{-\infty}^{\infty} e^{-(y-z)^{2} / 4 k s} \phi(z) \mathrm{d} z
$$

It follows that

$$
u(x, t)=\frac{1}{2 \sqrt{\pi k t}} \int_{-\infty}^{\infty} e^{-(x-V t-y)^{2} / 4 k t} \phi(y) \mathrm{d} y
$$

2.5.1. Suppose that we solve the wave equation on the whole real line with initial data

$$
\phi(x)=0 \quad \text { and } \quad \psi(x)=e^{-x^{2}}
$$

Then there is no boundary and initially $u(x, 0)=0$ but $u(x, t)>0$ for $t>0$ small. So the maximum is an interior point of any suitable rectangle.
2.5.2. (a) If $u=f(x-a t)$ then

$$
u_{t t}=a^{2} f^{\prime \prime}(x-a t) \quad \text { and } \quad u_{x x}=f^{\prime \prime}(x-a t)
$$

This gives

$$
a^{2} f^{\prime \prime}(x-a t)=c^{2} f^{\prime \prime}(x-a t)
$$

If $f^{\prime \prime}$ is not identically zero it follows that $a^{2}=c^{2}$ so that $a= \pm c$. If $f^{\prime \prime}$ is identically zero then f must be linear.
(b) If $u=f(x-a t)$ then

$$
u_{t}=a f^{\prime}(x-a t) \quad \text { and } \quad u_{x x}=f^{\prime \prime}(x-a t)
$$

This gives

$$
a f^{\prime}(x-a t)=k f^{\prime \prime}(x-a t) .
$$

Subsituting for $y=a x-a t$ this gives

$$
a f^{\prime}(y)=k f^{\prime \prime}(y)
$$

Integrating we get

$$
k f^{\prime}(y)=a f(y)+b .
$$

This is an inhomogeneous linear ODE for $f . f(y)=b y / k$ is a particular solution. The associated homogeneous is

$$
k f^{\prime}(y)=a f(y)
$$

This has general solution

$$
f(y)=e^{a y / k} .
$$

Thus the original equation has general solution

$$
f(y)=e^{a y / k}+\frac{b y}{k} .
$$

This shows that a is arbitrary.
Challenge Problems: (Just for fun)
2.4.16. Let

$$
u(x, t)=e^{-b t} v(x, t) .
$$

Then

$$
u_{t}=-b e^{-b t} v(x, t)+e^{-b t} v_{t}\left(\underset{5}{x, t)} \quad \text { and } \quad v_{x x}=e^{-b t} u_{x x}\right.
$$

It follows that

$$
v_{t}-k u_{x x}=0
$$

and so

$$
u(x, t)=\frac{1}{2 \sqrt{\pi k t}} e^{-b t} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 k t} \phi(y) \mathrm{d} y .
$$

2.4.17. Let

$$
u(x, t)=e^{-b t^{3} / 3} v(x, t)
$$

Then

$$
u_{t}=-b t^{2} e^{-b t^{3} / 3} v(x, t)+e^{-b t} v_{t}(x, t) \quad \text { and } \quad v_{x x}=e^{-b t^{3} / 3} u_{x x} .
$$

It follows that

$$
v_{t}-k u_{x x}=0
$$

and so

$$
u(x, t)=\frac{1}{2 \sqrt{\pi k t}} e^{-b t^{3} / 3} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 k t} \phi(y) \mathrm{d} y .
$$

