
MODEL ANSWERS TO THE FIFTH HOMEWORK

2.4.1. Note that Q(x, t) is a solution to the diffusion equation with
Q(x, 0) = H(x). This jumps from zero to one at x = 0. φ(x) jumps
from 0 to 1 at x = −l and then jumps from 1 to 0 at x = l.
Now

H(x+ l) =

{
1 for x > −l
0 for x < −l.

This is almost correct, we just want to adjust this function so that it
jumps down at x = l.

H(x− l) =

{
1 for x > l

0 for x < l.

Thus
φ(x) = H(x+ l)−H(x− l).

Q(x+ l, t) is a solution to the diffusion equation with initial conditions
H(x+l and Q(x−l, t) is a solution to the diffusion equation with initial
conditions H(x− l).
It follows that Q(x + l, t) − Q(x − l, t) is a solution to the diffusion
equation with initial condition H(x+ l)−H(x− l) = φ(x).
Now

Q(x, t) =
1

2
+

1

2
E rf

(
x√
4kt

)
.

Thus

Q(x+ l, t)−Q(x− l, t) =
1

2

(
E rf

(
x+ l√

4kt

)
− E rf

(
x− l√

4kt

))
.

2.4.9. uxxx is a solution to the diffusion equation, as any derivative
of a solution is a solution. As u(x, 0) = x2, we have ux(x, 0) = 2x,
uxx(x, 0) = 2 and uxxx(x, 0) = 0. By uniqueness, it follows that
uxxx(x, t) = 0. If we integrate thrice we get

u(x, t) = A(t)x2 +B(t)x+ C(t).

In this case

ut = A′(t)x2 +B′(t)x+ C ′(t) and uxx = 2A(t).

As u is a solution of the diffusion equation we get

A′(t)x2 +B′(t)x+ C ′(t) = 2kA(t).
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It follows that A′(t) = B′(t) = 0 and C ′(t) = 2A(t). From the first
two equations we deduce that A(t) = a and B(t) = b are constants.
If we plug in t = 0 we see that a = 1 and b = 0. From the equation
C ′(t) = 2k we see that C(t)2 = 2kt + c and from the initial condition
we see that c = 0.
Thus

u(x, t) = x2 + 2kt

is a solution to the diffusion equation such that u(x, 0) = x2.
2.4.10. (a) The general formula says that

u(x, t) =
1

2
√
πkt

∫ ∞
−∞

e−(x−y)
2/4kty2 dy.

If we let

p =
x− y√

4kt
then dp = − dy√

4kt
.

and

y2 = (x−
√

4ktp)2.

So the integral becomes

u(x, t) =
1√
π

∫ ∞
−∞

e−p
2

(x−
√

4ktp)2 dp.

(b) If we expand the square in the integral, we get three terms,

x2 − 2
√

4ktpx+ 4ktp2.

Now consider what happens when we integrate. For the first term we
can pull out x2 and the resulting integral

1√
π

∫ ∞
−∞

e−p
2

dp = 1.

It follows that the coefficient of x2 is one, as expected. As p is odd and
e−p

2
is even, pe−p

2
is odd and so the integral of the second term is zero.

Hence the coefficient of x is zero. Thus

u(x, t) = x2 +
4kt√
π

∫ ∞
−∞

p2e−p
2

dp.

Comparing we must have∫ ∞
−∞

p2e−p
2

dp =

√
π

2
.
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2.4.11. (a) Consider v(x, t) = u(x, t) + u(−x, t). By linearity v is a
solution of the diffusion equation. We have

v(x, 0) = u(x, 0) + u(−x, 0)

= φ(x) + φ(−x)

= 0.

Thus v is a solution to the diffusion equation such that v(x, 0) is iden-
tically zero. Another such function is the function which is identically
zero. By uniqueness v is identically zero.
But then

u(x, t) + u(−x, t) = 0,

so that u is odd.
(b) Consider v(x, t) = u(x, t)− u(−x, t). By linearity v is a solution of
the diffusion equation. We have

v(x, 0) = u(x, 0)− u(−x, 0)

= φ(x)− φ(−x)

= 0.

Thus v is a solution to the diffusion equation such that v(x, 0) is iden-
tically zero. Another such function is the function which is identically
zero. By uniqueness v is identically zero.
But then

u(x, t)− u(−x, t) = 0,

so that u is even.
(c) For the wave equation we need that both φ(x) and ψ(x) are odd
(respectively even).
Consider v(x, t) = u(x, t)± u(−x, t). By linearity v is a solution of the
diffusion equation. We have

v(x, 0) = u(x, 0)± u(−x, 0)

= φ(x)± φ(−x)

= 0,

and

vt(x, 0) = ut(x, 0)± ut(−x, 0)

= ψ(x)± ψ(−x)

= 0.

Thus v is a solution to the diffusion equation such that both v(x, 0)
and vt(x, 0) are identically zero. Another such function is the function
which is identically zero. By uniqueness v is identically zero.
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But then

u(x, t)± u(−x, t) = 0,

so that u is odd (respectively even).
2.4.12. (a)

Q(x, t) =
1

2
+

1

2
E rf

(
x√
4kt

)
.

(b) We have

ez = 1 + z +
1

2
z2 +

1

6
z3 + · · ·+ 1

n!
zn + . . . .

Thus

e−y
2

= 1− y2 +
1

2
y4 − 1

6
y6 + · · ·+ (−1)n

1

n!
y2n + . . . .

It follows that∫
e−y

2

dy = y− 1

3
y3 +

1

10
y5− 1

42
y7 + · · ·+(−1)n

1

(2n+ 1)n!
y2n+1 + . . . .

It follows that

Q(x, t) =
1

2
+

1

2

x√
4kt
−1

6

(
x√
4kt

)3

+
1

20

(
x√
4kt

)5

+· · ·+(−1)n
1

2(2n+ 1)n!

(
x√
4kt

)2n+1

+. . . .

(c) We have

Q(x, t) ≈ 1

2
+

1

2

x√
4kt

.

(d) If x is fixed and t is large then

y =
x√
4kt

is small and then the Taylor series is a good approximation.
2.4.18. Consider the change of variable y = x− V t, s = t. We have

δx = δy and δs = −V δy + δt

It follows that

ut − kuxx + V ux = us − kuyy.
The second equation is the diffusion equation and it has solution

u(y, s) =
1

2
√
πks

∫ ∞
−∞

e−(y−z)
2/4ksφ(z) dz.

It follows that

u(x, t) =
1

2
√
πkt

∫ ∞
−∞

e−(x−V t−y)2/4ktφ(y) dy.
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2.5.1. Suppose that we solve the wave equation on the whole real line
with initial data

φ(x) = 0 and ψ(x) = e−x
2

.

Then there is no boundary and initially u(x, 0) = 0 but u(x, t) > 0
for t > 0 small. So the maximum is an interior point of any suitable
rectangle.
2.5.2. (a) If u = f(x− at) then

utt = a2f ′′(x− at) and uxx = f ′′(x− at)
This gives

a2f ′′(x− at) = c2f ′′(x− at).
If f ′′ is not identically zero it follows that a2 = c2 so that a = ±c. If
f ′′ is identically zero then f must be linear.
(b) If u = f(x− at) then

ut = af ′(x− at) and uxx = f ′′(x− at)
This gives

af ′(x− at) = kf ′′(x− at).
Subsituting for y = ax− at this gives

af ′(y) = kf ′′(y).

Integrating we get
kf ′(y) = af(y) + b.

This is an inhomogeneous linear ODE for f . f(y) = by/k is a particular
solution. The associated homogeneous is

kf ′(y) = af(y).

This has general solution

f(y) = eay/k.

Thus the original equation has general solution

f(y) = eay/k +
by

k
.

This shows that a is arbitrary.

Challenge Problems: (Just for fun)

2.4.16. Let
u(x, t) = e−btv(x, t).

Then

ut = −be−btv(x, t) + e−btvt(x, t) and vxx = e−btuxx.
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It follows that
vt − kuxx = 0

and so

u(x, t) =
1

2
√
πkt

e−bt
∫ ∞
−∞

e−(x−y)
2/4ktφ(y) dy.

2.4.17. Let
u(x, t) = e−bt

3/3v(x, t).

Then

ut = −bt2e−bt3/3v(x, t) + e−btvt(x, t) and vxx = e−bt
3/3uxx.

It follows that
vt − kuxx = 0

and so

u(x, t) =
1

2
√
πkt

e−bt
3/3

∫ ∞
−∞

e−(x−y)
2/4ktφ(y) dy.
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