
MODEL ANSWERS TO THE SIXTH HOMEWORK

3.1.1. We use the general formula

u(x, t) =
1√

4πkt

∫ ∞
0

(e−(x−y)
2/4kt − e−(x+y)2/4kt)e−y dy.

We complete the square in both integrals, as in lecture 11. Note that

−(x+ y)2 = −(−(−x)− y)2.

The exponents of the exponentials in the two integrals are

−(y + 2kt− x)2

4kt
+ kt− x and − (y + 2kt+ x)2

4kt
+ kt+ x.

To get the second expression just flip the sign of x. We make the change
of variables

p =
y + 2kt− x√

4kt
and q =

y + 2kt+ x√
4kt

,

so that

dp =
dy√
4kt

and dq =
dy√
4kt

.

Thus

u(x, t) =
1√
π
ekt−x

∫ ∞
(2kt−x)/

√
4kt

e−p
2

dp− 1√
π
ekt+x

∫ ∞
(2kt+x)/

√
4kt

e−q
2

dq

=
1

2
(ekt−x − ekt+x)− ekt−x E rf((2kt− x)/

√
4kt) + ekt+x E rf((2kt+ x)/

√
4kt).

3.1.3. We want to solve the Neumann boundary problem

wt = kwxx for 0 < x <∞, 0 < t <∞
w(x, 0) = φ(x) for t = 0

wx(0, t) = 0 for x = 0.

Let φeven be the unique function which is the same as φ for x > 0 (φeven

extends φ) and which is also even.

φeven(x) =

{
φ(x) if x > 0

φ(−x) if x < 0.
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Now we solve the auxiliary problem

ut = kuxx for −∞ < x <∞, 0 < t <∞
u(x, 0) = φeven(x) for t = 0.

We have a formula for

u(x, t) =

∫ ∞
−∞

S(x− y, t)φeven(y) dy.

u is even as φeven is even. It follows that ux is odd. Let w(x, t) be the
restriction of u(x, t) to the half line 0 < x <∞. Note that as ux is odd,
wx(0, t) = 0. As derivatives are computed locally, wt is the restriction
of ut and wxx is the restriction of uxx. Thus w automatically satisfies
the diffusion equation. As φ is the restriction of φeven(x) it is automatic
that w(x, 0) = φ(x).
We have

u(x, t) =

∫ ∞
0

S(x− y, t)φ(y) dy +

∫ 0

−∞
S(x− y, t)φ(−y) dy.

If we change variable from −y to y in the second integral, we get

u(x, t) =

∫ ∞
0

(S(x− y, t) + S(x+ y, t))φ(y) dy

It follows that

w(x, t) =
1√

4πkt

∫ ∞
0

(e−(x−y)
2/4kt + e−(x+y)2/4kt)φ(y) dy

3.2.1. Consider the Neumann boundary problem

vtt = c2vxx for 0 < x <∞, 0 < t <∞
v(x, 0) = φ(x) vt(x, 0) = ψ(x) for t = 0

vx(0, t) = 0 for x = 0.

Let φeven and ψeven be the even extensions of φ and ψ to the whole real
line. Let u(x, t) be the solution to the wave equation on the whole real
line and let v be the restriction of u to positive values of x. Then u is
even so that ux is odd and so vx(0, t) = 0.
If we apply d’Alembert’s formula then we get

v(x, t) =
1

2
(φeven(x+ ct) + φeven(x− ct)) +

1

2c

∫ x+ct

x−ct
ψeven(y) dy.

We now turn this into a formula involving φ and ψ. There are two
possibilities, depending on the sign of x − ct. If x > c|t| then both

2



x+ ct and x− ct are positive and so

v(x, t) =
1

2
(φ(x+ ct) + φ(x− ct)) +

1

2c

∫ x+ct

x−ct
ψ(y) dy,

the usual formula. But now suppose that x < c|t|. Then x − ct is
negative so that

φeven(x− ct) = φ(ct− x).

Thus

v(x, t) =
1

2
(φ(x+ ct) + φ(ct− x))+

1

2c

∫ x+ct

0

ψ(y) dy+
1

2c

∫ 0

x−ct
ψ(−y) dy,

If we replace y by −y in the second integral then we get

v(x, t) =
1

2
(φ(x+ ct) + φ(ct− x))+

1

2c

∫ ct−x

0

ψ(y) dy+
1

2c

∫ x+ct

0

ψ(y) dy,

valid when x < c|t|.
3.2.3. At time t = 0 we have

u(x, 0) = f(x) and ut(x, 0) = cf ′(x)

We apply d’Alembert’s formula. There are two cases. If x > ct then

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

∫ x+ct

x−ct
cf ′(y) dy

=
1

2
(f(x+ ct) + f(x− ct)) +

1

2
(f(x+ ct)− f(x− ct))

= f(x+ xt).

But if x < ct then we get

u(x, t) =
1

2
(f(x+ ct)− f(ct− x)) +

1

2c

∫ x+ct

ct−x
cf ′(y) dy

=
1

2
(f(x+ ct)− f(ct− x)) +

1

2
(f(x+ ct)− f(ct− x))

= f(x+ ct)− f(ct− x).

3.2.5. We apply d’Alembert’s formula. There are two cases. If x > ct
then

u(x, t) =
1

2
(1 + 1)

= 1.
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But if x < ct then we get

u(x, t) =
1

2
(1− 1)

= 0.

Thus u(x, t) = H(x− ct). The singularity is at x = ct.
3.2.9. (a) c = 1 so that the characteristic lines are x − t = −4/3 and
x+ t = 8/3. So the two relevant intervals are [−2,−1] and [2, 3]. Both
the first and the second represents two reflections. Thus the general
formula is

v(x, t) =
1

2
φ(x− t+ 2) +

1

2
φ(x+ t− 2) +

1

2

∫ x+t−2

x−t+2

ψ(s) ds.

As φ(x) = x2(1− x) and x− t+ 2 = x+ t− 2, we get

v(
2

3
, 2) = 22(1− 2/3)/32

= 4/27.

(b) Now the characteristic lines are x−t = −13/4 and x+t = 15/4. So
the two relevant intervals are [−4,−3] and [3, 4]. The first represents
four reflections and the second represents three reflections. Thus the
general formula is

v(x, t) =
1

2
φ(x− t+ 4)− 1

2
φ(4− x− t) +

1

2

∫ 4−x−t

x−t+4

ψ(s) ds.

Now x− t+ 4 = 3/4 and 4− x− t = 1/4 and so we get

v(
1

4
,
7

2
) =

1

2
32(1− 3/4)/42 − 1

2
1(1− 1/4)/42 − 1

2

[
−(1− x)3/3

]3/4
1/4

=
1

2

32 − 3

43
− 1

6

33 − 1

43

= − 1

48
.

Challenge Problems: (Just for fun)

3.1.4. (a) v(x, t) is a solution of the diffusion equation with initial
conditions v(x, 0) = f(x).
(b) As the derivative of a solution to the diffusion equation is a solu-
tion to the diffusion equation, we have vx is a solution of the diffusion
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equation. By linearity it follows that w is a solution of the diffusion
equation. The initial conditions are given by

w(x, 0) = vx(x, 0)− 2v(x, 0)

= f ′(x)− 2f(x)

=

{
1− 2x for x > 0

−1− 2x for x < 0

(c) f(x)− 2f ′(x) is clearly odd.
(d) As w is a solution of the diffusion equation and f(x)− 2f ′(x) is an
odd function, it follows that w is odd.
(e) It follows that w(0, t) = 0. Thus v(x, t) satisfies the diffusion equa-
tion, with initial condition v(x, 0) = x and vx(0, t)−2v(0, t) = w(0, t) =
0. It follows that

u(x, t) =
1√

4πkt

∫ ∞
−∞

e−(x−y)
2/4ktf(y) dy.
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