MODEL ANSWERS TO THE SIXTH HOMEWORK

3.1.1. We use the general formula

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty}\left(e^{-(x-y)^{2} / 4 k t}-e^{-(x+y)^{2} / 4 k t}\right) e^{-y} \mathrm{~d} y
$$

We complete the square in both integrals, as in lecture 11. Note that

$$
-(x+y)^{2}=-(-(-x)-y)^{2} .
$$

The exponents of the exponentials in the two integrals are

$$
-\frac{(y+2 k t-x)^{2}}{4 k t}+k t-x \quad \text { and } \quad-\frac{(y+2 k t+x)^{2}}{4 k t}+k t+x .
$$

To get the second expression just flip the sign of x. We make the change of variables

$$
p=\frac{y+2 k t-x}{\sqrt{4 k t}} \quad \text { and } \quad q=\frac{y+2 k t+x}{\sqrt{4 k t}}
$$

so that

$$
\mathrm{d} p=\frac{\mathrm{d} y}{\sqrt{4 k t}} \quad \text { and } \quad \mathrm{d} q=\frac{\mathrm{d} y}{\sqrt{4 k t}} .
$$

Thus

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{\pi}} e^{k t-x} \int_{(2 k t-x) / \sqrt{4 k t}}^{\infty} e^{-p^{2}} \mathrm{~d} p-\frac{1}{\sqrt{\pi}} e^{k t+x} \int_{(2 k t+x) / \sqrt{4 k t}}^{\infty} e^{-q^{2}} \mathrm{~d} q \\
& =\frac{1}{2}\left(e^{k t-x}-e^{k t+x}\right)-e^{k t-x} \mathscr{E} \operatorname{rf}((2 k t-x) / \sqrt{4 k t})+e^{k t+x} \mathscr{E} \operatorname{rf}((2 k t+x) / \sqrt{4 k t}) .
\end{aligned}
$$

3.1.3. We want to solve the Neumann boundary problem

$$
\begin{aligned}
w_{t} & =k w_{x x} \quad \text { for } \quad 0<x<\infty, \quad 0<t<\infty \\
w(x, 0) & =\phi(x) \quad \text { for } \quad t=0 \\
w_{x}(0, t) & =0 \quad \text { for } \quad x=0
\end{aligned}
$$

Let $\phi_{\text {even }}$ be the unique function which is the same as ϕ for $x>0\left(\phi_{\text {even }}\right.$ extends ϕ) and which is also even.

$$
\phi_{\mathrm{even}}(x)=\left\{\begin{array}{cc}
\phi(x) & \text { if } x>0 \\
\phi(-x) & \text { if } x<0 \\
1 &
\end{array}\right.
$$

Now we solve the auxiliary problem

$$
\begin{aligned}
u_{t} & =k u_{x x} \quad \text { for } \quad-\infty<x<\infty, \quad 0<t<\infty \\
u(x, 0) & =\phi_{\text {even }}(x) \quad \text { for } \quad t=0 .
\end{aligned}
$$

We have a formula for

$$
u(x, t)=\int_{-\infty}^{\infty} S(x-y, t) \phi_{\text {even }}(y) \mathrm{d} y .
$$

u is even as $\phi_{\text {even }}$ is even. It follows that u_{x} is odd. Let $w(x, t)$ be the restriction of $u(x, t)$ to the half line $0<x<\infty$. Note that as u_{x} is odd, $w_{x}(0, t)=0$. As derivatives are computed locally, w_{t} is the restriction of u_{t} and $w_{x x}$ is the restriction of $u_{x x}$. Thus w automatically satisfies the diffusion equation. As ϕ is the restriction of $\phi_{\text {even }}(x)$ it is automatic that $w(x, 0)=\phi(x)$.
We have

$$
u(x, t)=\int_{0}^{\infty} S(x-y, t) \phi(y) \mathrm{d} y+\int_{-\infty}^{0} S(x-y, t) \phi(-y) \mathrm{d} y
$$

If we change variable from $-y$ to y in the second integral, we get

$$
u(x, t)=\int_{0}^{\infty}(S(x-y, t)+S(x+y, t)) \phi(y) \mathrm{d} y
$$

It follows that

$$
w(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty}\left(e^{-(x-y)^{2} / 4 k t}+e^{-(x+y)^{2} / 4 k t}\right) \phi(y) \mathrm{d} y
$$

3.2.1. Consider the Neumann boundary problem

$$
\begin{array}{rlrl}
v_{t t} & =c^{2} v_{x x} \quad \text { for } \quad 0<x<\infty, & 0<t<\infty \\
v(x, 0) & =\phi(x) & v_{t}(x, 0)=\psi(x) \quad \text { for } \quad t=0 \\
v_{x}(0, t) & =0 \quad \text { for } \quad x=0 . & &
\end{array}
$$

Let $\phi_{\text {even }}$ and $\psi_{\text {even }}$ be the even extensions of ϕ and ψ to the whole real line. Let $u(x, t)$ be the solution to the wave equation on the whole real line and let v be the restriction of u to positive values of x. Then u is even so that u_{x} is odd and so $v_{x}(0, t)=0$.
If we apply d'Alembert's formula then we get

$$
v(x, t)=\frac{1}{2}\left(\phi_{\text {even }}(x+c t)+\phi_{\text {even }}(x-c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi_{\text {even }}(y) \mathrm{d} y .
$$

We now turn this into a formula involving ϕ and ψ. There are two possibilities, depending on the sign of $x-c t$. If $x>c|t|$ then both
$x+c t$ and $x-c t$ are positive and so

$$
v(x, t)=\frac{1}{2}(\phi(x+c t)+\phi(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(y) \mathrm{d} y
$$

the usual formula. But now suppose that $x<c|t|$. Then $x-c t$ is negative so that

$$
\phi_{\mathrm{even}}(x-c t)=\phi(c t-x) .
$$

Thus
$v(x, t)=\frac{1}{2}(\phi(x+c t)+\phi(c t-x))+\frac{1}{2 c} \int_{0}^{x+c t} \psi(y) \mathrm{d} y+\frac{1}{2 c} \int_{x-c t}^{0} \psi(-y) \mathrm{d} y$,
If we replace y by $-y$ in the second integral then we get
$v(x, t)=\frac{1}{2}(\phi(x+c t)+\phi(c t-x))+\frac{1}{2 c} \int_{0}^{c t-x} \psi(y) \mathrm{d} y+\frac{1}{2 c} \int_{0}^{x+c t} \psi(y) \mathrm{d} y$,
valid when $x<c|t|$.
3.2.3. At time $t=0$ we have

$$
u(x, 0)=f(x) \quad \text { and } \quad u_{t}(x, 0)=c f^{\prime}(x)
$$

We apply d'Alembert's formula. There are two cases. If $x>c t$ then

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} c f^{\prime}(y) \mathrm{d} y \\
& =\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2}(f(x+c t)-f(x-c t)) \\
& =f(x+x t)
\end{aligned}
$$

But if $x<c t$ then we get

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}(f(x+c t)-f(c t-x))+\frac{1}{2 c} \int_{c t-x}^{x+c t} c f^{\prime}(y) \mathrm{d} y \\
& =\frac{1}{2}(f(x+c t)-f(c t-x))+\frac{1}{2}(f(x+c t)-f(c t-x)) \\
& =f(x+c t)-f(c t-x)
\end{aligned}
$$

3.2 .5 . We apply d'Alembert's formula. There are two cases. If $x>c t$ then

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}(1+1) \\
& =1
\end{aligned}
$$

But if $x<c t$ then we get

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}(1-1) \\
& =0 .
\end{aligned}
$$

Thus $u(x, t)=H(x-c t)$. The singularity is at $x=c t$.
3.2.9. (a) $c=1$ so that the characteristic lines are $x-t=-4 / 3$ and $x+t=8 / 3$. So the two relevant intervals are $[-2,-1]$ and $[2,3]$. Both the first and the second represents two reflections. Thus the general formula is

$$
v(x, t)=\frac{1}{2} \phi(x-t+2)+\frac{1}{2} \phi(x+t-2)+\frac{1}{2} \int_{x-t+2}^{x+t-2} \psi(s) \mathrm{d} s .
$$

As $\phi(x)=x^{2}(1-x)$ and $x-t+2=x+t-2$, we get

$$
\begin{aligned}
v\left(\frac{2}{3}, 2\right) & =2^{2}(1-2 / 3) / 3^{2} \\
& =4 / 27
\end{aligned}
$$

(b) Now the characteristic lines are $x-t=-13 / 4$ and $x+t=15 / 4$. So the two relevant intervals are $[-4,-3]$ and $[3,4]$. The first represents four reflections and the second represents three reflections. Thus the general formula is

$$
v(x, t)=\frac{1}{2} \phi(x-t+4)-\frac{1}{2} \phi(4-x-t)+\frac{1}{2} \int_{x-t+4}^{4-x-t} \psi(s) \mathrm{d} s
$$

Now $x-t+4=3 / 4$ and $4-x-t=1 / 4$ and so we get

$$
\begin{aligned}
v\left(\frac{1}{4}, \frac{7}{2}\right) & =\frac{1}{2} 3^{2}(1-3 / 4) / 4^{2}-\frac{1}{2} 1(1-1 / 4) / 4^{2}-\frac{1}{2}\left[-(1-x)^{3} / 3\right]_{1 / 4}^{3 / 4} \\
& =\frac{1}{2} \frac{3^{2}-3}{4^{3}}-\frac{1}{6} \frac{3^{3}-1}{4^{3}} \\
& =-\frac{1}{48}
\end{aligned}
$$

Challenge Problems: (Just for fun)
3.1.4. (a) $v(x, t)$ is a solution of the diffusion equation with initial conditions $v(x, 0)=f(x)$.
(b) As the derivative of a solution to the diffusion equation is a solution to the diffusion equation, we have v_{x} is a solution of the diffusion
equation. By linearity it follows that w is a solution of the diffusion equation. The initial conditions are given by

$$
\begin{aligned}
w(x, 0) & =v_{x}(x, 0)-2 v(x, 0) \\
& =f^{\prime}(x)-2 f(x) \\
& = \begin{cases}1-2 x & \text { for } x>0 \\
-1-2 x & \text { for } x<0\end{cases}
\end{aligned}
$$

(c) $f(x)-2 f^{\prime}(x)$ is clearly odd.
(d) As w is a solution of the diffusion equation and $f(x)-2 f^{\prime}(x)$ is an odd function, it follows that w is odd.
(e) It follows that $w(0, t)=0$. Thus $v(x, t)$ satisfies the diffusion equation, with initial condition $v(x, 0)=x$ and $v_{x}(0, t)-2 v(0, t)=w(0, t)=$ 0 . It follows that

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 k t} f(y) \mathrm{d} y
$$

