MODEL ANSWERS TO THE SEVENTH HOMEWORK

3.3.1. Let $f_{\text {odd }}$ and $\phi_{\text {odd }}$ be the odd extensions of f and ϕ to the whole real line. Let v be the solution to the inhomogeneous diffusion equation on the whole line with source $f_{\text {odd }}$ and initial condition $\phi_{\text {odd }}$,

$$
v_{t}-k v_{x x}=f_{\text {odd }}(x, t) \quad \text { for } \quad-\infty<x<\infty, \quad 0<t<\infty,
$$

where

$$
v(x, 0)=\phi_{\text {odd }}(x) .
$$

Then
$v(x, t)=\int_{-\infty}^{\infty} S(x-y, t) \phi_{\text {odd }}(y) \mathrm{d} y+\int_{0}^{t} \int_{-\infty}^{\infty} S(x-y, t-s) f_{\text {odd }}(y, s) \mathrm{d} y \mathrm{~d} s$
Let u be the restriction of v to the half line $0<x<\infty$.
Consider $v(x, t)+v(-x, t)$. This is a solution to the homogeneous diffusion equation with zero initial conditions. Uniqueness implies that $v(x, t)+v(-x, t)=0$. It follows that $v(x, t)$ is odd and so $u(0, t)=0$. u is a solution to the inhomogeneous diffusion equation with source f and initial condition $\phi(x)$.
We have

$$
\begin{aligned}
u(x, t) & =\int_{-\infty}^{\infty} S(x-y, t) \phi_{\text {odd }}(y) \mathrm{d} y+\int_{0}^{t} \int_{-\infty}^{\infty} S(x-y, t-s) f_{\text {odd }}(y, s) \mathrm{d} y \mathrm{~d} s \\
& =\int_{0}^{\infty} S(x-y, t) \phi(y) \mathrm{d} y+\int_{-\infty}^{0} S(x-y, t)-\phi(-y) \mathrm{d} y+\int_{0}^{t} \int_{-\infty}^{\infty} S(x-y, t-s) f_{\text {odd }}(y, s) \\
& =\int_{0}^{\infty}\left(S(x-y, t)-S(x+y, t) \phi(y) \mathrm{d} y+\int_{0}^{t} \int_{0}^{\infty}(S(x-y, t-s)-S(x+y, t-s)) f(y, s)\right.
\end{aligned}
$$

3.3.3. Let $W(x, t)=w(x, t)-x h(t)$. Then

$$
W_{x}=w_{x}-h(t) \quad \text { and } \quad W_{t}=w_{x}-x h^{\prime}(t) .
$$

Thus

$$
W_{t}-k W_{x x}=-x h^{\prime}(t) .
$$

We also have

$$
W_{x}(0, t)=0 \quad \text { and } \quad W(x, 0)=\phi(x)
$$

Thus W satisfies the inhomogeneous diffusion equation on the half line with source $-x h^{\prime}(t)$ and initial condition $\phi(x)$.

By 3.3.1 we have
$W(x, t)=\int_{0}^{\infty}\left(S(x-y, t)-S(x+y, t) \phi(y) \mathrm{d} y+\int_{0}^{t} \int_{0}^{\infty}(S(x-y, t-s)-S(x+y, t-s)) x h^{\prime}(t) \mathrm{d} y \mathrm{~d} s\right.$.
It follows that

$$
w(x, t)=\int_{0}^{\infty}\left(S(x-y, t)-S(x+y, t) \phi(y) \mathrm{d} y+\int_{0}^{t} \int_{0}^{\infty}(S(x-y, t-s)-S(x+y, t-s)) x h^{\prime}(t) \mathrm{d} y \mathrm{~d} s+x h\right.
$$

3.4.1. We simply apply the formula. We have

$$
\phi(x)=\psi(x)=0 \quad \text { and } \quad f(x, t)=x t
$$

so that

$$
\begin{aligned}
u(x, t) & =\frac{1}{2 c} \iint_{\Delta} f \\
& =\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} y s \mathrm{~d} y \mathrm{~d} s \\
& =\frac{1}{4 c} \int_{0}^{t}\left[y^{2} s\right]_{x-c(t-s)}^{x+c(t-s)} \mathrm{d} s \\
& =\frac{1}{4 c} \int_{0}^{t} s\left((x+c(t-s))^{2}-(x-c(t-s))^{2}\right) \mathrm{d} s \\
& =x \int_{0}^{t} s t-s^{2} \mathrm{~d} s \\
& =x\left(\frac{t^{3}}{2}-\frac{t^{3}}{3}\right) \\
& =\frac{x t^{3}}{6} .
\end{aligned}
$$

3.4.3. Again, we simply apply the formula.

There are three parts. The part corresponding to ϕ is

$$
\frac{1}{2} \phi(x+c t)+\frac{1}{2} \phi(x-c t)=\frac{1}{2} \sin (x+c t)+\frac{1}{2} \sin (x-c t) .
$$

The part corresponding to ψ is

$$
\begin{aligned}
\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi & =\frac{1}{2 c} \int_{x-c t}^{x+c t}(1+s) \mathrm{d} s \\
& =\frac{1}{2 c}\left[s+\frac{s^{2}}{2}\right]_{x-c t}^{x+c t} \\
& =t+\frac{1}{4 c}\left((x+c t)^{2}-(x-c t)^{2}\right) \\
& =t+x t
\end{aligned}
$$

Finally there is the part corresponding to f

$$
\begin{aligned}
\frac{1}{2 c} \iint_{\Delta} f & =\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} \cos y \mathrm{~d} y \mathrm{~d} s \\
& =\frac{1}{2 c} \int_{0}^{t}[\sin y]_{x-c(t-s)}^{x+c(t-s)} \mathrm{d} s \\
& =\frac{1}{2 c} \int_{0}^{t} \sin (x+c(t-s))-\sin (x-c(t-s)) \mathrm{d} s \\
& =\frac{1}{2 c^{2}}[\cos (x+c(t-s))+\cos (x-c(t-s))]_{0}^{t} \\
& =\frac{1}{c^{2}} \cos x-\frac{1}{2 c^{2}}(\cos (x+c t)+\cos (x-c t)) .
\end{aligned}
$$

Putting all of this together gives

$$
u(x, t)=\frac{1}{2} \sin (x+c t)+\frac{1}{2} \sin (x-c t)+t+x t+\frac{1}{c^{2}} \cos x-\frac{1}{2 c^{2}}(\cos (x+c t)+\cos (x-c t)) .
$$

4.1.2. We have the PDE

$$
u_{t}=k u_{x x}
$$

where $u(x, 0)=1$ and $u(0, t)=u(l, t)=0$.
The general solution is

$$
u_{n}(x, t)=\sum_{n} A_{n} e^{-\frac{n^{2} \pi^{2}}{l^{2}} k t} \sin \frac{n \pi x}{l} .
$$

This satisfies the initial condition

$$
u_{n}(x, 0)=\sum_{n} A_{n} \sin \frac{n \pi x}{l} .
$$

If we compare this with the series expansion

$$
1=\frac{4}{\pi}\left(\sin \frac{\pi x}{l}+\frac{1}{3} \sin \frac{3 \pi x}{l}+\frac{1}{5} \sin \frac{5 \pi x}{l}+\ldots\right)
$$

we see that we want to choose

$$
A_{n}= \begin{cases}\frac{4}{\pi} \frac{1}{2 n+1} & \text { if } n \text { is odd } \\ 0 & \text { if } n \text { is even }\end{cases}
$$

Thus

$$
u(x, t)=\frac{4}{\pi}\left(e^{-\frac{\pi^{2}}{l^{2}} k t} \sin \frac{\pi x}{l}+\frac{1}{3} e^{-9 \frac{\pi^{2}}{l^{2}} k t} \sin \frac{3 \pi x}{l}+\frac{1}{5} e^{-25 \frac{\pi^{2}}{l^{2}} k t} \sin \frac{5 \pi x}{l}+\ldots\right)
$$

is the heat distribution in the metal rod.
4.1.3. Let

$$
u(x, t)=X_{3}(x) T(t)
$$

be a separated solution. Then

$$
T^{\prime}(t) X(x)=i T(t) X^{\prime \prime}(x) .
$$

It follows that

$$
\frac{T^{\prime}}{i T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

is constant. We have already seen that this implies that

$$
X_{n}(x)=\sin \frac{n \pi x}{l}
$$

for some n, where

$$
\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}
$$

The equation for T is then

$$
T^{\prime}+i \lambda_{n} T=0 .
$$

This gives

$$
T(t)=A_{n} e^{-i \lambda_{n} t}
$$

Thus

$$
u(x, t)=\sum_{n} A_{n} e^{-n^{2} \pi^{2} i t / l^{2}} \sin \frac{n \pi x}{l} .
$$

4.1.4. As usual, we look for separated solutions. The PDE becomes

$$
\frac{T^{\prime \prime}+r T^{\prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

As usual we get

$$
X_{n}(x)=\sin \frac{n \pi x}{l} \quad \text { where } \quad \lambda_{n}=\left(\frac{n \pi x}{l}\right)^{2} .
$$

Thus

$$
T^{\prime \prime}+r T^{\prime}+\lambda_{n} c^{2} T=0
$$

Consider the quadratic equation

$$
z^{2}+r z+\lambda_{n} c^{2}=0
$$

The roots are given by the quadratic formula. They are

$$
\begin{aligned}
z & =\frac{-r \pm \sqrt{r^{2}-\lambda_{n} c^{2}}}{2} \\
& =\frac{-r \pm i \sqrt{\lambda_{n} c^{2}-r^{2}}}{2} \\
& =-\frac{r}{2} \pm b_{n} i .
\end{aligned}
$$

It follows that

$$
T_{n}(t)=e^{-r t / 2}\left(A_{n} \cos b_{n} t+B_{n} \sin b_{n} t\right)
$$

Thus we get

$$
u(x, t)=e^{-r t / 2} \sum_{n}\left(A_{n} \cos b_{n} t+B_{n} \sin b_{n} t\right) \sin \frac{n \pi x}{l} .
$$

Challenge Problems: (Just for fun)
3.4.6. (a) Recall that we have a factorisation

$$
\begin{aligned}
u_{t t}-c^{2} u_{x x} & =\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u \\
& =f(x, t)
\end{aligned}
$$

If we let

$$
v=u_{t}+c u_{x} \quad \text { then } \quad v_{t}-c v_{x}=f .
$$

(b) If we introduce the change of coordinates

$$
\xi=c x+t \quad \text { and } \quad \eta=x-c t
$$

then the first equation reduces to

$$
u_{\xi}=v .
$$

If we integrate with respect to ξ then we get

$$
u(\xi, \eta)=\int^{\xi} v
$$

Now consider changing back to x, t-coordinates. The integral is over the curves where η is constant. These are parametrised as

$$
(x-c t+c s, s) .
$$

Therefore we get

$$
u(x, t)=\int_{0}^{t} v(x-c t+c s, s) \mathrm{d} s
$$

(c) If we introduce the change of coordinates

$$
\xi=c x+t \quad \text { and } \quad \eta=x-c t
$$

then the first equation reduces to

$$
v_{\eta}=f .
$$

If we integrate with respect to ξ then we get

$$
v(\xi, \eta)=\int_{5}^{\eta} f
$$

Now consider changing back to x, t-coordinates. The integral is over the curves where ξ is constant. These are parametrised as

$$
(x+c t-c r, r) .
$$

Therefore we get

$$
v(x, t)=\int_{0}^{t} f(x+c t-c r, r) \mathrm{d} r .
$$

(d) We have

$$
\begin{aligned}
u(x, t) & =\int_{0}^{t} v(x-c t+c s, s) \mathrm{d} s \\
& =\int_{0}^{t} \int_{0}^{s} f(x-c t+2 c s-c r, r) \mathrm{d} r \mathrm{~d} s \\
& =\int_{0}^{t} \int_{r}^{t} f(x-c t+2 c s-c r, r) \mathrm{d} s \mathrm{~d} r
\end{aligned}
$$

To get from the first line to the second line we used (c) to substitute for v and to get from the second line to the third line we changed the order of integration. Now consider the change of variable $y=x-c t+2 c s-c r$. We get

$$
\mathrm{d} y=2 c \mathrm{~d} s
$$

Thus we get

$$
u(x, t)=\frac{1}{2 c} \int_{0}^{t} \int_{x-c t+c r}^{x+c t-c r} f(y, r) \mathrm{d} y \mathrm{~d} r
$$

3.4.12. We integrate over the reflection Δ of the domain of dependence. There are two cases. If $x_{0}+c t_{0} \geq 0$ then the domain of dependence has the standard triangular shape and we will get the same answer as before.
If $x_{0}+c t_{0}<0$ then the reflection of the domain of dependence is a triangle with a triangle removed (another domain of dependence with vertex along the t-axis). This domain of has four sides, call them M_{0}, M_{1}, M_{2} and M_{3}. Compared with the labelling on page $76, M_{0}$ is a part of $L_{0}, M_{1}=L_{1}, M_{2}$ is a part of L_{2} and M_{3} starts on the t-axis and goes down to the x-axis, parallel to M_{1}.
Note that the line $x-x_{0}=c\left(t-t_{0}\right)$ meets the t-axis where

$$
t=t_{0}-\frac{x_{0}}{c}
$$

On the other hand the endpoint of M_{3} on the x-axis is the reflection of $\left(x_{0}-c t_{0}, 0\right)$ which is $\left(c t_{0}-x_{0}, 0\right)$.

We have

$$
\iint_{\Delta} f \mathrm{~d} x \mathrm{~d} t=\iint_{\Delta}\left(v_{t t}-c^{2} v_{x x}\right) \mathrm{d} x \mathrm{~d} t .
$$

Green's Theorem states that

$$
\iint_{\Delta}\left(P_{x}-Q_{y}\right) \mathrm{d} x \mathrm{~d} t=\iint_{\partial \Delta} P \mathrm{~d} t+Q \mathrm{~d} x
$$

for any functions P and Q. Thus

$$
\iint_{\Delta} f \mathrm{~d} x \mathrm{~d} t=\iint_{M_{0}+M_{1}+M_{2}+M_{3}}-c^{2} v_{x} \mathrm{~d} t-v_{t} \mathrm{~d} x
$$

For the integral over M_{0} we have $\mathrm{d} t=0$ and so

$$
\int_{M_{0}}=-\int_{c t_{0}-x_{0}}^{x_{0}+c t_{0}} \psi(x) \mathrm{d} x .
$$

Note the lower limit is now $c t_{0}-x_{0}$. The integral over $M_{1}=L_{1}$ is the same as before,

$$
\int_{M_{1}}=c v\left(x_{0}, t_{0}\right)-c \phi\left(x_{0}+c t_{0}\right) .
$$

On M_{2} we have $x-c t=x_{0}-c t_{0}$ so that $\mathrm{d} x-c \mathrm{~d} t=0$. But then

$$
-c^{2} v_{x} \mathrm{~d} t-v_{t} \mathrm{~d} x=-c v_{x} \mathrm{~d} x-c v_{t} \mathrm{~d} t=-c \mathrm{~d} v
$$

It follows that

$$
\int_{M_{2}}=c v\left(x_{0}, t_{0}\right)-c h\left(t_{0}-\frac{x_{0}}{c}\right) .
$$

For the integral over M_{3}, we have $x+c t=c t_{0}-x_{0}$, so that $\mathrm{d} x+c \mathrm{~d} t=0$.
But then

$$
-c^{2} v_{x} \mathrm{~d} t-v_{t} \mathrm{~d} x=c v_{x} \mathrm{~d} x+c v_{t} \mathrm{~d} t=c \mathrm{~d} v
$$

Thus

$$
\int_{M_{3}}=c \int_{M_{3}} \mathrm{~d} v=-\operatorname{ch}\left(t_{0}-\frac{x_{0}}{c}\right)+c v \phi\left(c t_{0}-x_{0}\right) .
$$

Adding these results gives

$$
\iint_{\Delta} f \mathrm{~d} x \mathrm{~d} t=2 c v\left(x_{0}, t_{0}\right)-2 c h\left(t_{0}-\frac{x_{0}}{c}\right)-c\left(\phi\left(x_{0}+c t_{0}\right)-\phi\left(c t_{0}-x_{0}\right)\right)-\int_{c t_{0}-x_{0}}^{x_{0}+c t_{0}} \psi(x) \mathrm{d} x .
$$

Thus

$$
v\left(x_{0}, t_{0}\right)=h\left(t_{0}-\frac{x_{0}}{c}\right)+\frac{1}{2}\left(\phi\left(x_{0}+c t_{0}\right)-\phi\left(c t_{0}-x_{0}\right)\right)+\frac{1}{2 c} \int_{c t_{0}-x_{0}}^{x_{0}+c t_{0}} \psi(x) \mathrm{d} x+\frac{1}{2 c} \iint_{\Delta} f \mathrm{~d} x \mathrm{~d} t .
$$

4.1.6. If we look for separated solutions

$$
u(x, t)=\underset{7}{X}(x) T(t)
$$

then we get

$$
t X T^{\prime}=X^{\prime \prime} T+2 X T
$$

This gives

$$
\frac{t T^{\prime}}{T}-2=\frac{X^{\prime \prime}}{X}=-\lambda
$$

Suppose that $-\lambda=\beta^{2}>0$. For X we get

$$
X(x)=C \cos \beta x+D \sin \beta x
$$

As usual, imposing the boundary condition reduces this to

$$
X(x)=\sin n x
$$

This gives the ODE

$$
t T^{\prime}=\left(2-n^{2}\right) T
$$

The general solution of this ODE is

$$
T=A t^{2-n^{2}}
$$

where A is a constant. Thus the separated solutions are

$$
u_{n}(x, t)=A t^{2-n^{2}} \sin n x
$$

If we take $n=1$ then we get

$$
u_{1}(x, t)=A t \sin x
$$

This all satisfy the initial condition $u(x, 0)=0$ and so there are infinitely many solutions, one for each value of A.

