MODEL ANSWERS TO THE EIGHTH HOMEWORK

4.2.2. (a) We want to solve

$$
X^{\prime \prime}=-\lambda X,
$$

subject to $X^{\prime}(0)=X(l)=0$. Suppose that $\lambda=\beta^{2}>0$.
The general solution of the ODE is

$$
X(x)=C \cos \beta x+D \sin \beta x
$$

The boundary conditions imply

$$
0=X^{\prime}(0)=D \beta
$$

and

$$
0=X(l)=C \cos \beta l+D \sin \beta l
$$

The first equation implies that $D=0$ and so the second equation implies that

$$
\cos \beta l=0
$$

But then

$$
\beta l=\left(n+\frac{1}{2}\right) \pi .
$$

It follows that

$$
\beta=\left(n+\frac{1}{2}\right) \frac{\pi}{l} \quad \text { so that } \quad \lambda=\left(n+\frac{1}{2}\right)^{2} \frac{\pi^{2}}{l^{2}} .
$$

The corresponding eigenfunction is then

$$
\cos \left(n+\frac{1}{2}\right) \frac{\pi x}{l} .
$$

It is easy to see that λ cannot be zero. One can also easily rule out $\lambda<0$.
(b) The equation for T is

$$
T^{\prime \prime}=-\lambda T
$$

This has general solution

$$
A_{n} \cos \left(n+\frac{1}{2}\right) \frac{\pi t}{l}+B_{n} \sin \left(n+\frac{1}{2}\right) \frac{\pi t}{l} .
$$

Therefore we have

$$
u(x, t)=\sum_{n}\left(A_{n} \cos \left(n+\frac{1}{2}\right) \frac{\pi t}{l}+B_{n} \sin \left(n+\frac{1}{2}\right) \frac{\pi t}{l}\right) \cos \left(n+\frac{1}{2}\right) \frac{\pi x}{l}
$$

If we plug in $t=0$ we get
$\phi(x)=\sum_{n} A_{n} \cos \left(n+\frac{1}{2}\right) \frac{\pi x}{l} \quad$ and $\quad \psi(x)=\sum_{n} B_{n}\left(n+\frac{1}{2}\right) \frac{\pi}{l} \cos \left(n+\frac{1}{2}\right) \frac{\pi x}{l}$.
4.2.4. We want to solve

$$
X^{\prime \prime}=-\lambda X
$$

subject to $X(-l)=X(l)$ and $X^{\prime}(-l)=X^{\prime}(l)$. Suppose first that $\lambda=\beta^{2}>0$.
The general solution of the ODE is

$$
X(x)=A \cos \beta x+B \sin \beta x .
$$

The boundary conditions imply that

$$
A \cos \beta l-B \sin \beta l=A \cos \beta l+B \sin \beta l,
$$

and

$$
-A \beta \sin \beta l+B \beta \cos \beta l=A \beta \sin \beta l+B \beta \cos \beta l .
$$

These equations reduce to

$$
B \sin \beta l=0 \quad \text { and } \quad A \sin \beta l=0
$$

As not both A and B are zero we must have

$$
\sin \beta l=0 .
$$

But then

$$
\beta=\frac{n \pi}{l}
$$

and

$$
\lambda=\left(\frac{n \pi}{l}\right)^{2} .
$$

Now suppose that $\lambda=0$. The general solution of the ODE is

$$
X(x)=A x+B .
$$

The boundary conditions imply that

$$
-l A+B=l A+B \quad \text { and } \quad A=A .
$$

Thus $A=0$. It follows that $X(x)=1$ is an eigenfunction with eigenvalue 0 .
If $\lambda<0$ then the general solution of the ODE is

$$
X(x)=A \cosh \beta x+B \sinh \beta x .
$$

As cosh and sinh are not periodic, the boundary conditions imply that $A=B=0$. Thus the eigenvalues are given by

$$
\lambda=\left(\frac{n \pi}{l}\right)^{2}
$$

$n=0,1,2, \ldots$.
(b) Given n, the solution of the ODE

$$
T^{\prime}=-\lambda T
$$

is

$$
T_{n}(t)=e^{-n^{2} \pi^{2} k t / l^{2}}
$$

Thus the general solution of the diffusion equation with periodic boundary conditions is

$$
u(x, t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{l}+B_{n} \sin \frac{n \pi x}{l}\right) e^{-n^{2} \pi^{2} k t / l^{2}}
$$

4.3.1. We want to solve the ODE

$$
X^{\prime \prime}=-\lambda X,
$$

subject to $X(0)=0$ and $X^{\prime}(l)+a X(l)=0(a \neq 0)$. Assume that $\lambda>0$. The general solution of the ODE is

$$
X(x)=A \cos \beta x+B \sin \beta x
$$

where $\lambda=\beta^{2}>0$. The condition $X(0)=0$ implies that $A=0$. The condition that $X^{\prime}(l)+a X(l)=0$ implies that

$$
B \beta \cos \beta l+B a \sin \beta l=0 .
$$

This reduces to

$$
\tan \beta l=-\frac{\beta}{a}
$$

The RHS represents a line through the origin. This meets the graph of $\tan \beta l$, where $\beta>0$, at infinitely many points. Suppose the solutions are $\beta_{1}, \beta_{2}, \ldots$.
There are two cases. If $a<0$ then the slope is positive and there is one solution β_{1} between π and $3 \pi / 2$, one solution β_{2} between 2π and $5 \pi / 2$ and so on,

$$
\lim _{m \rightarrow \infty}(m+1 / 2) \pi-\beta_{m}=0 .
$$

If $a>0$ then the slope is negative and there is one solution β_{1} between $\pi / 2$ and π, one solution β_{2} between $3 \pi / 2$ and 2π and so on,

$$
\lim _{m \rightarrow \infty} \beta_{m}-(m-1 / 2) \pi=0
$$

Now suppose that $\lambda=0$. Then $X(x)=A x+B$. The condition $X(0)=$ 0 implies that $B=0$ and then the condition that $X^{\prime}(l)+a X(l)=0$ implies that $A=0$. There are no eigenfunctions with eigenvalue zero. Finally suppose that $\lambda<0$. The general solution of the ODE is

$$
X(x)=A \underset{3}{\cosh \beta x}+B \sinh \beta x
$$

where $-\lambda=\beta^{2}>0$. The condition that $X(0)=0$ implies that $A=0$. The condition that $X^{\prime}(l)+a X(l)=0$ implies that

$$
B \beta \cosh \beta l+B a \sinh \beta l=0 .
$$

But then

$$
\tanh \beta l=-\frac{\beta}{a}
$$

There are two cases. If $a<0$ there is one solution. If $a>0$ there are no solutions.
Thus there is only one negative eigenvalue and only if $a<0$.
4.3.2. (a) Suppose that $\lambda=0$. The general solution of the ODE

$$
X^{\prime \prime}=0
$$

is $X(x)=C x+D$. The boundary conditions imply that

$$
C-a_{0} D=0 \quad \text { and } \quad C+a_{l}(C l+D)=0
$$

From the first equation we get $C=a_{0} D$. The equation then reduces to

$$
a_{0} D+a_{l}\left(a_{0} D l+D\right)=0 .
$$

Cancelling D we get

$$
a_{0}+a_{l}+a_{0} a_{l} l=0 .
$$

Conversely if $X(x)=a_{0} x+1$ and $a_{0}+a_{l}=-a_{0} a_{l} l$ then $X(x)$ is an eigenfunction with eigenvalue 0 .
(b) The eigenfunctions are $X(x)=a_{0} x+1$.
4.3.11. (a) We have

$$
\begin{aligned}
\frac{c^{-2}}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{0}^{l} u_{t}^{2} \mathrm{~d} x & =c^{-2} \int_{0}^{l} u_{t} u_{t t} \mathrm{~d} x \\
& =\int_{0}^{l} u_{t} u_{x x} \mathrm{~d} x \\
& =\left[u_{t} u_{x}\right]_{0}^{l}-\int_{0}^{l} u_{x t} u_{x} \mathrm{~d} x \\
& =-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{0}^{l} u_{x}^{2} \mathrm{~d} x .
\end{aligned}
$$

To get from the third line to the fourth line we use the fact that $u_{t}=0$ at the boundary points, as $u=0$ on the boundary. Thus the derivative of E with respect to t is zero, so that E is constant in time.
(b) The same calculation is still valid. To get from the third line to the fourth line we use the fact that $u_{x}=0$ at the boundary points.
(c) Now we have

$$
\begin{aligned}
{\left[u_{t} u_{x}\right]_{0}^{l} } & =u_{t}(l, t) u_{x}(l, t)-u_{t}(0, t) u_{x}(0, t) \\
& =-a_{l} u_{t}(l, t) u(l, t)-a_{0} u_{t}(0, t) u(0, t) \\
& =-\frac{1}{2} a_{l}\left(u^{2}(l, t)\right)_{t}-\frac{1}{2} a_{0} u_{t}(0, t)\left(u^{2}(0, t)\right)_{t} .
\end{aligned}
$$

Thus the derivative of E_{R} with respect to time is zero, so that E_{R} is constant.

Challenge Problems: (Just for fun)
4.3.12. (a) The general solution

$$
v_{x x}=0
$$

is $v(x)=a x+b$. The boundary conditions imply that

$$
a=a=\frac{a l+b-b}{l} .
$$

Thus $v(x)=1$ and $v(x)=x$ are two eigenfunctions with eigenvalue 0 .
(b) If $\lambda=\beta^{2}>0$ then the general solution

$$
v_{x x}=-\lambda v
$$

is $v(x)=a \cos \beta x+b \sin \beta x$. The boundary conditions imply that

$$
b \beta=-a \beta \sin \beta l+b \beta \cos \beta l=\frac{a \cos \beta l+b \sin \beta l-a}{l} .
$$

If we use the first equation to solve for a we get

$$
a=b \frac{(\cos \beta l-1)}{\sin \beta l} .
$$

If we use the second equation to solve for a we get

$$
a=b \frac{l \beta-\sin \beta l}{\cos \beta l-1} .
$$

Since not both a and b are zero, comparing we get

$$
\frac{(\cos \beta l-1)}{\sin \beta l}=\frac{l \beta-\sin \beta l}{\cos \beta l-1}
$$

so that

$$
(\cos \beta l-1)^{2}=\sin \beta l(l \beta-\sin \beta l)
$$

(c) If we put

$$
\gamma=\frac{1}{2} l \beta .
$$

then the equation above reduces to

$$
(\cos 2 \gamma-1)^{2}=\sin 2 \gamma(2 \gamma-\sin 2 \gamma)
$$

Using the double angle formulae this gives

$$
4 \sin ^{4} \gamma=2 \sin \gamma \cos \gamma(2 \gamma-2 \sin \gamma \cos \gamma)
$$

Cancelling gives

$$
\sin ^{4} \gamma=\sin \gamma \cos \gamma(\gamma-\sin \gamma \cos \gamma)
$$

Expanding we get

$$
\sin ^{4} \gamma=\gamma \cos \gamma \sin \gamma-\sin ^{2} \gamma \cos ^{2} \gamma
$$

Thus

$$
\sin ^{2} \gamma=\gamma \cos \gamma \sin \gamma
$$

(d) One possibility is that $\sin \gamma=0$, so that

$$
\gamma=n \pi
$$

is a multiple of π. Otherwise

$$
\sin \gamma=\gamma \cos \gamma
$$

As not both sine and cosine can be zero, we have

$$
\tan \gamma=\gamma
$$

Looking at the graph of $\tan \gamma$ versus the graph of γ, we see that there are infinitely many positive solutions $\gamma_{1}, \gamma_{2}, \ldots$ of the equation. We have

$$
\pi \leq \gamma_{1} \frac{3 \pi}{2} \quad 2 \pi \leq \gamma_{2} \frac{5 \pi}{2}, \ldots
$$

and the limit

$$
\lim _{n \rightarrow \infty} \frac{2 n+1}{\pi} / 2-\gamma_{n}=0 .
$$

(e) If $\gamma=n \pi$ then the eigenfunctions are

$$
\cos \frac{2 n \pi x}{l}
$$

Otherwise the eigenfunctions are

$$
\left(\cos \frac{2 \gamma_{n}}{l}-1\right) \cos \frac{2 \gamma_{n} x}{l}+\sin \frac{2 \gamma_{n}}{l} \sin \frac{2 \gamma_{n} x}{l}
$$

Finally, if $\lambda=0$ then we have

$$
1 \quad \text { and } \quad x
$$

(f) The general solution is

$$
u(x, t)=A x+B+\sum_{n} A_{n} e^{-4 n^{2} \pi^{2} k t / l^{2}} \cos \frac{2 n \pi x}{l}+B_{n} e^{-4 \gamma_{n}^{2} k t / l^{2}}\left(\left(\cos \frac{2 \gamma_{n}}{l}-1\right) \cos \frac{2 \gamma_{n} x}{l}+\sin \frac{2 \gamma_{n}}{l} \sin \right.
$$

If we set $t=0$ this reduces to
$\phi(x)=\sum_{n} A_{n} \cos \frac{2 n \pi x}{l}+B_{n}\left(\left(\cos \frac{2 \gamma_{n}}{l}-1\right) \cos \frac{2 \gamma_{n} x}{l}+\sin \frac{2 \gamma_{n}}{l} \sin \frac{2 \gamma_{n} x}{l}\right)$,
and this determines the coefficients, A_{1}, A_{2}, \ldots and B_{1}, B_{2}, \ldots
The limit as $t \rightarrow \infty$ is $A x+B$.
4.3.13. (a) The only issue is to determine the boundary condition at $x=l$. We assume that the mass is sufficiently small in comparison to the tension, so that we can ignore the effect of gravity. Newton's second law implies that

$$
T \frac{u_{x}}{\sqrt{1+u_{x}^{2}}}=m u_{t t}(l, t)
$$

where T is the tension. The denominator of the fraction on the LHS is approximately one, so that this reduces to

$$
u_{t t}(l, t)=k u_{x}(l, t)
$$

where

$$
k=\frac{T}{m} .
$$

(b) Suppose we have a separated solution

$$
u(x, t)=X(x) T(t)
$$

As usual the wave equation reduces to

$$
X^{\prime \prime}=-\lambda X \quad \text { and } \quad T^{\prime \prime}=-\lambda T
$$

The boundary conditions become $X(0)=0$ and

$$
T^{\prime \prime}(t) X(l)=T(t) X^{\prime}(l)
$$

Using the fact that $T^{\prime \prime}(t)=-\lambda T(t)$ this reduces to

$$
X^{\prime}(l)=-\lambda X(l)
$$

(c) We have

$$
X(x)=C \cos \beta x+D \sin \beta x
$$

where $\lambda=\beta^{2}>0$. The first boundary condition implies that

$$
C=0 .
$$

In this case we may assume that $D=1$. The second boundary condition then reduces to

$$
\beta \cos \beta l=-\beta^{2} \sin \beta l .
$$

As not both sin and cosine can be zero this reduces to

$$
\tan \beta l=-\frac{1}{\beta} .
$$

It is is not hard to see there are infinitely many solutions $\beta_{1}, \beta_{2}, \ldots$ The corresponding eigenfunctions are then

$$
\sin \beta_{n} x .
$$

