MODEL ANSWERS TO THE EIGHTH HOMEWORK

4.2.2. (a) We want to solve
X" =-)\X,

subject to X’(0) = X(I) = 0. Suppose that A = 32 > 0.
The general solution of the ODE is

X(z) = Ccos fz + Dsin fx.
The boundary conditions imply
0=X'(0)=Dp

and
0= X(l) = Ccospl+ Dsinfjl.

The first equation implies that D = 0 and so the second equation
implies that

cos Bl = 0.
But then .
Bl=(n+ 5)7‘(‘
It follows that
1 1,72
5:(n+§)§ so that A= (n+§)27;—2.
The corresponding eigenfunction is then
1 7wz
cos(n + 5)7

It is easy to see that A cannot be zero. One can also easily rule out
A <0.
(b) The equation for T is

T" = —\T,
This has general solution

1, 7t _ 1 7t
A, cos(n + 5)7 + B, sin(n + 5)7

Therefore we have

1. 7t ) 1. 7t 1. 7
u(w,t) = Z(An cos(n + 5)7 + B, sin(n + 5)7) cos(n + 5)T

n
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If we plug in t = 0 we get

1. 7wz 1.7

() = ;An cos(n+§)7 and U(x) = ;Bn(n+§)7 cos(n—|—§

4.2.4. We want to solve
X" = -)\X,
subject to X(—Il) = X(I) and X'(—l) = X'(I). Suppose first that
A= p32>0.
The general solution of the ODE is

X (x) = Acos fx + Bsin fz.
The boundary conditions imply that
Acos 8l — Bsin 8l = Acos Sl + Bsin 3,
and
—ABsin Bl + B cos 5l = ABsin Bl + B cos (1.
These equations reduce to
Bsinpl =0 and Asin gl = 0.
As not both A and B are zero we must have
sin 51 = 0.
But then

and
- (5
Now suppose that A = 0. The general solution of the ODE is
X(x) = Az + B.
The boundary conditions imply that
—lA+B=IA+B and A=A

Thus A = 0. It follows that X (z) = 1 is an eigenfunction with eigen-
value 0.
If A < 0 then the general solution of the ODE is

X (z) = Acosh fx 4+ Bsinh fx.

As cosh and sinh are not periodic, the boundary conditions imply that
A = B = 0. Thus the eigenvalues are given by

- ()

2

n=0,12,....

)

1. 7wz
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(b) Given n, the solution of the ODE
T = -\T
is
T (t) = e 7m k0,

Thus the general solution of the diffusion equation with periodic bound-
ary conditions is

oo

A
u(z,t) = 70 + ; (An cos nlﬂ + B, sin ?) eI
4.3.1. We want to solve the ODE

X" = —)\X,

subject to X (0) = 0 and X'(I) + aX(l) = 0 (a # 0). Assume that
A > 0. The general solution of the ODE is

X(z) = Acosfz + Bsin Sz,

where A = 32 > 0. The condition X (0) = 0 implies that A = 0. The
condition that X'(I) + aX () = 0 implies that

Bp cos 8l + Basin 1 = 0.

This reduces to

tan 5l = —é.
a
The RHS represents a line through the origin. This meets the graph of
tan 81, where § > 0, at infinitely many points. Suppose the solutions
are 31, B, . ...
There are two cases. If a < 0 then the slope is positive and there is
one solution (31 between m and 37/2, one solution By between 27 and
57/2 and so on,

lim (m+1/2)7 — B, = 0.
m—0o0

If a > 0 then the slope is negative and there is one solution (3; between
7/2 and 7, one solution B2 between 37 /2 and 27 and so on,

lim B, — (m—1/2)r = 0.
m—r0o0

Now suppose that A = 0. Then X (z) = Az+ B. The condition X (0) =
0 implies that B = 0 and then the condition that X'(l) + aX(l) = 0
implies that A = 0. There are no eigenfunctions with eigenvalue zero.
Finally suppose that A < 0. The general solution of the ODE is

X (z) = Acosh fx 4+ Bsinh fx,
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where —\ = 3% > 0. The condition that X (0) = 0 implies that A = 0.
The condition that X’(I) + aX(I) = 0 implies that

Bp cosh 8l + Basinh gl = 0.

But then

tanh Bl — 2.
a

There are two cases. If a < 0 there is one solution. If a > 0 there are
no solutions.

Thus there is only one negative eigenvalue and only if a < 0.

4.3.2. (a) Suppose that A = 0. The general solution of the ODE

X" =0
is X(z) = Cx + D. The boundary conditions imply that
C—aD=0 and C+aq(Cl+D)=0.

From the first equation we get C' = agD. The equation then reduces
to

aoD + a;(agDl + D) = 0.
Cancelling D we get
aog + a; + apayl = 0.
Conversely if X(z) = apr + 1 and ag + a; = —apa;l then X (z) is an
eigenfunction with eigenvalue 0.

(b) The eigenfunctions are X (z) = apz + 1.
4.3.11. (a) We have

-2 l l

c2d 2 1y — o2 d

—_— U, Ar = ¢ UtUs AT
0

l
= / Ul AT
0
l l
= [utux] — / Uy Uy A
0 0

1d [,
=——— [ uydx.
2dt Jo *
To get from the third line to the fourth line we use the fact that u; =0
at the boundary points, as v = 0 on the boundary. Thus the derivative
of E with respect to t is zero, so that E is constant in time.
(b) The same calculation is still valid. To get from the third line to the

fourth line we use the fact that u, = 0 at the boundary points.
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(¢) Now we have

{ut%l = us(l, t)uy(l,t) — ue(0,t)u,(0,t)

= —Glut(l7 t)u(l, t) — aout(oa t)u(()? t)

1, 1 2
- _QQZ(U (1) — anut((),t)(U (0,2))e-

Thus the derivative of EFr with respect to time is zero, so that Ep is
constant.

Challenge Problems: (Just for fun)

4.3.12. (a) The general solution

Vge = 0
is v(z) = ax + b. The boundary conditions imply that
al +b—10
—

Thus v(z) = 1 and v(x) = x are two eigenfunctions with eigenvalue 0.
(b) If A = % > 0 then the general solution

a=a=

Ugy = — AV
is v(x) = acos fx + bsin fz. The boundary conditions imply that
acos Bl + bsin Bl — a
l .

b = —afsin Bl + bB cos Bl =

If we use the first equation to solve for a we get

B b(cos pl—1)
N sinfBl
If we use the second equation to solve for a we get
[ — sin 1
a=b——m—F——.
cos Bl — 1

Since not both a and b are zero, comparing we get

(cospl —1) 1B —sinpl
sin S5l ~ cosBl—1

so that
(cos Bl — 1)? = sin BI(13 — sin BI).
(c) If we put

1
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then the equation above reduces to

(cos2y — 1)? = sin 2(27y — sin 27).
Using the double angle formulae this gives

4sin*y = 2siny cosy(2y — 2siny cos ).

Cancelling gives

sin v = sin y cos y(y — siny cos ).
Expanding we get
4

siny = 7 cosysiny — sin® y cos® v.

Thus
sin?y = 7 cos 7y sin .
(d) One possibility is that siny = 0, so that

v =nm,
is a multiple of w. Otherwise
sin 7y = y cos .
As not both sine and cosine can be zero, we have
tany = .
Looking at the graph of tan~ versus the graph of v, we see that there
are infinitely many positive solutions vi,7s,... of the equation. We
have
TS M5 21 < -,
and the limit om 4 1
n
lim /2 — v, =0.
n—00 T

e) If v = n7m then the eigenfunctions are
Y

2nmwx
CoS

Otherwise the eigenfunctions are

29, 2, . 2% . 27
(cos%—l)cos ’le—l—sm%sm fylx

Finally, if A = 0 then we have

1 and x.
(f) The general solution is

2nmx

u(zx,t) = Aa:—{—B—i—Z Ape TR g

6

2Yn
+Bn6_47%kt/l2 ((cos % — 1) cos

29T

l

27 .
+sinism

l



If we set t = 0 this reduces to

2nrmx 29 29%x . 29, . 27
o(x) = ;An cos — +B, ((Cos l 1) cos l + sin ;- sin— > :
and this determines the coefficients, A;, Ay, ... and By, Bo,....
The limit as t — oo is Ax + B.
4.3.13. (a) The only issue is to determine the boundary condition at
x = [. We assume that the mass is sufficiently small in comparison
to the tension, so that we can ignore the effect of gravity. Newton’s
second law implies that

T

Uy

where T is the tension. The denominator of the fraction on the LHS is
approximately one, so that this reduces to

Utt(l, t) = kur(l, t)

= mutt(l, t),

where T
k= —.

m
(b) Suppose we have a separated solution

u(z,t) = X(x)T'(t).
As usual the wave equation reduces to
X"=-\X and T" = —\T.
The boundary conditions become X (0) = 0 and
T"OX(1) =T(t)X'(1).
Using the fact that 7" (t) = —AT'(¢) this reduces to
X'(1) = =AX(1).
(c) We have
X (x) = Ccos Bz + D sin fz,

where A = 32 > 0. The first boundary condition implies that

C=0.

In this case we may assume that D = 1. The second boundary condi-
tion then reduces to

B cos Bl = — /3% sin Bl.
As not both sin and cosine can be zero this reduces to

tan Bl = —%.
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It is is not hard to see there are infinitely many solutions 3y, fa, . . ..

The corresponding eigenfunctions are then

sin 3,x.



