MODEL ANSWERS TO THE NINTH HOMEWORK

5.1.2. (a) Suppose that we write

$$
x^{2}=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{l} .
$$

We just need to compute

$$
\begin{aligned}
A_{m} & =2 \int_{0}^{1} \phi(x) \sin m \pi x \mathrm{~d} x \\
& =2 \int_{0}^{1} x^{2} \sin m \pi x \mathrm{~d} x \\
& =2\left[\frac{-x^{2}}{m \pi} \cos m \pi x+\frac{2 x}{m^{2} \pi^{2}} \sin m \pi x+\frac{2}{m^{3} \pi^{3}} \cos m \pi x\right]_{0}^{1} \\
& =-\frac{2}{m \pi} \cos m \pi+\frac{4}{m^{3} \pi^{3}} \cos m \pi-\frac{4}{m^{3} \pi^{3}} \\
& =\frac{2}{m \pi}(-1)^{m+1}+\frac{4}{m^{3} \pi^{3}}(-1)^{m}-\frac{4}{m^{3} \pi^{3}}
\end{aligned}
$$

It follows that

$$
A_{m}= \begin{cases}-\frac{2}{m \pi} & \text { if } m \text { is even } \\ \frac{2}{m \pi}-\frac{8}{m^{3} \pi^{3}} & \text { if } m \text { is odd }\end{cases}
$$

Thus
$x^{2}=\frac{2}{\pi}\left(\sin \pi x-\frac{1}{2} \sin 2 \pi x+\frac{1}{3} \sin 3 \pi x+\ldots\right)-\frac{8}{\pi^{3}}\left(\sin \pi x+\frac{1}{27} \sin 3 \pi x+\frac{1}{125} \sin 5 \pi x+\ldots\right)$.
(b) Suppose that we write

$$
x^{2}=\frac{A_{0}}{2}+\sum_{\substack{n=1 \\ 1}}^{\infty} A_{n} \cos \frac{n \pi x}{l} .
$$

We just need to compute

$$
\begin{aligned}
A_{m} & =2 \int_{0}^{1} \phi(x) \cos m \pi x \mathrm{~d} x \\
& =2 \int_{0}^{1} x^{2} \cos m \pi x \mathrm{~d} x \\
& =2\left[\frac{x^{2}}{m \pi} \sin m \pi x+\frac{2 x}{m^{2} \pi^{2}} \cos m \pi x-\frac{2}{m^{3} \pi^{3}} \sin m \pi x\right]_{0}^{1} \\
& =\frac{4}{m^{2} \pi^{2}} \cos m \pi \\
& =\frac{4}{m^{2} \pi^{2}}(-1)^{m}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
A_{0} & =2 \int_{0}^{1} \phi(x) \mathrm{d} x \\
& =2 \int_{0}^{1} x^{2} \mathrm{~d} x \\
& =2\left[\frac{x^{3}}{3}\right]_{0}^{1} \\
& =\frac{2}{3}
\end{aligned}
$$

Thus

$$
x^{2}=\frac{1}{3}+\frac{4}{\pi^{2}}\left(-\sin \pi x+\frac{1}{4} \sin 2 \pi x-\frac{1}{9} \sin 3 \pi x+\ldots\right) .
$$

5.1.5. (a) We start with

$$
x=\frac{2 l}{\pi}\left(\sin \frac{\pi x}{l}-\frac{1}{2} \sin \frac{2 \pi x}{l}+\frac{1}{3} \sin \frac{3 \pi x}{l}+\ldots\right) .
$$

If we integrate both sides and assume that we can switch the order of integration and summation we get

$$
\frac{x^{2}}{2}=c-\frac{2 l^{2}}{\pi^{2}}\left(\cos \frac{\pi x}{l}-\frac{1}{4} \cos \frac{2 \pi x}{l}+\frac{1}{9} \cos \frac{3 \pi x}{l}+\ldots\right),
$$

where c is a constant to be determined.
If we integrate both sides over the interval $(0, l)$ then every term but the first is zero. Thus

$$
\frac{l^{3}}{6}=c l,
$$

so that

$$
c=\frac{l^{2}}{6}
$$

and so

$$
\frac{x^{2}}{2}=\frac{l^{2}}{6}-\frac{2 l^{2}}{\pi^{2}}\left(\cos \frac{\pi x}{l}-\frac{1}{4} \cos \frac{2 \pi x}{l}+\frac{1}{9} \cos \frac{3 \pi x}{l}+\ldots\right),
$$

It is reassuring that this answer is consistent with the answer in $1(\mathrm{~b})$. (b) If we set $x=0$ the LHS is zero. Thus

$$
0=\frac{l^{2}}{6}-\frac{2 l^{2}}{\pi^{2}}\left(1-\frac{1}{4}+\frac{1}{9}-\frac{1}{25}+\ldots\right)
$$

It follows that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=\frac{\pi^{2}}{12}
$$

5.1.8. Following the hint, we first find the equilibrium solution $U(x)$. By definition the equilibrium solution is independent of time. This the heat equation reduces to

$$
U_{x x}=0 \quad \text { subject to } \quad U(0)=0, U(1)=1
$$

The general solution of the PDE is

$$
U(x)=A x+B .
$$

The boundary conditions imply that

$$
B=0 \quad \text { and } \quad A=1
$$

Thus $U(x)=x$ is the equilibrium solution.
Now consider the diffusion equation with initial conditions

$$
u(x, 0)=\phi(x)-x .
$$

Thus

$$
u(x, 0)= \begin{cases}\frac{3 x}{2} & \text { for } 0<x<\frac{2}{3} \\ 3-3 x & \text { for } \frac{2}{3}<x<1\end{cases}
$$

Now the boundary conditions are the Dirichlet conditions $u(0, t)=$ $u(1, t)=0$. Thus we expand $u(x, 0)$ as a Fourier sine series. The
coefficients are

$$
\begin{aligned}
A_{m} & =2 \int_{0}^{1} \phi(x) \sin m \pi x \mathrm{~d} x \\
& =\int_{0}^{2 / 3} 3 x \sin m \pi x \mathrm{~d} x+6 \int_{2 / 3}^{1}(1-x) \sin m \pi x \mathrm{~d} x \\
& =\left[\frac{3 x}{m \pi} \cos m \pi x+\frac{3}{m^{2} \pi^{2}} \sin m \pi x\right]_{0}^{2 / 3}+6\left[\frac{1-x}{m \pi} \cos m \pi x-\frac{1}{m^{2} \pi^{2}} \sin m \pi x\right]_{2 / 3}^{1} \\
& =\frac{2}{m \pi} \cos \frac{2 m \pi}{3}+\frac{3}{m^{2} \pi^{2}} \sin \frac{2 m \pi}{3}-\frac{2}{m \pi} \cos \frac{2 m \pi}{3}+\frac{6}{m^{2} \pi^{2}} \sin \frac{2 m \pi}{3} \\
& =\frac{9}{m^{2} \pi^{2}} \sin \frac{2 m \pi}{3} .
\end{aligned}
$$

It follows that

$$
A_{m}= \begin{cases}0 & \text { if } m \text { is divisible by } 3 \\ \frac{\sqrt{3}}{2} \frac{9}{m^{2} \pi^{2}} & \text { if } m \text { is congruent to } 1 \text { modulo } 3 \\ -\frac{\sqrt{3}}{2} \frac{9}{m^{2} \pi^{2}} & \text { if } m \text { is congruent to } 2 \text { modulo } 3\end{cases}
$$

Thus

$$
u(x, 0)=\frac{9 \sqrt{3}}{2 \pi^{2}}(\sin \pi x-\sin 2 \pi x+\sin 4 \pi x-\sin 5 \pi x+\ldots) .
$$

Putting all of this together we get
$u(x, t)=x+\frac{9 \sqrt{3}}{2 \pi^{2}}\left(e^{-\pi^{2} t} \sin \pi x-e^{-4 \pi^{2} t} \sin 2 \pi x+e^{-16 \pi^{2} t} \sin 4 \pi x-e^{-25 \pi^{2} t} \sin 5 \pi x+\ldots\right)$.
5.1.9. Since we have Neumann boundary conditions, we want to take the Fourier cosine series for the initial conditions. $\phi=0$ and $\psi(x)=$ $\cos ^{2} x$. Now

$$
\cos ^{2} x=\frac{1}{2}+\frac{1}{2} \cos 2 x
$$

and so this is the Fourier cosine series for $\psi(x)$. It follows that

$$
B_{0}=1 \quad B_{2}=\frac{1}{2} \quad \text { and otherwise } \quad B_{m}=0
$$

On the other hand, $A_{m}=0$ as $\phi=0$. Thus

$$
u(x, t)=\frac{t}{2}+\frac{1}{4 c} \sin 2 c t \cos 2 x
$$

is the solution to the wave equation, with $u_{x}(0, t)=u_{x}(\pi, t)=0$, $u(x, 0)=0$ and $u_{t}(x, 0)=\cos ^{2} x$.
5.2.4. (a) Let

$$
\phi(x)=\frac{A_{0}}{2}+\sum_{n} A_{n} \cos \frac{n \pi x}{l}+B_{n} \sin \frac{n \pi x}{l}
$$

be the Fourier series of ϕ. If ϕ is an odd function then

$$
\phi(x) \cos \frac{m \pi x}{l}
$$

is also odd. It follows that

$$
\begin{aligned}
A_{m} & =\frac{1}{l} \int_{-l}^{l} \phi(x) \cos \frac{m \pi x}{l} \mathrm{~d} x \\
& =0
\end{aligned}
$$

Similarly $A_{0}=0$. Thus the Fourier series for ϕ only has sine terms.
(b) If ϕ is an even function then

$$
\phi(x) \sin \frac{m \pi x}{l}
$$

is an odd function. It follows that

$$
\begin{aligned}
B_{m} & =\frac{1}{l} \int_{-l}^{l} \phi(x) \sin \frac{m \pi x}{l} \mathrm{~d} x \\
& =0
\end{aligned}
$$

Thus the Fourier series for ϕ only has cosine terms.
5.2.6. Let ϕ be a function on $(0, l)$. Let $\phi_{\text {even }}$ be the even extension of ϕ to $(-l, l)$ so that

$$
\phi_{\mathrm{even}}(x)= \begin{cases}\phi(x) & \text { if } x>0 \\ \phi(-x) & \text { if } x<0\end{cases}
$$

Then the Fourier series for $\phi_{\text {even }}$ only contains cosine terms, so that we have

$$
\phi_{\mathrm{even}}=\frac{A_{0}}{2}+\sum A_{n} \cos \frac{n \pi x}{l} .
$$

If we restrict to $(0, l)$ then the LHS becomes ϕ and we get the Fourier cosine series for ϕ.
5.2.8. (a) Let ϕ be a differentiable function. If $\phi(x)$ is even then

$$
\phi^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\phi(x+h)-\phi(x)}{h} .
$$

It follows that

$$
\begin{aligned}
\phi^{\prime}(-x) & =\lim _{h \rightarrow 0} \frac{\phi(-x+h)-\phi(-x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\phi(x-h)-\phi(x)}{h} \\
& =\lim _{g \rightarrow 0} \frac{\phi(x+g)-\phi(x)}{-g} \\
& =-\lim _{g \rightarrow 0} \frac{\phi(x+g)-\phi(x)}{g} \\
& =-\phi^{\prime}(x) .
\end{aligned}
$$

Thus $\phi^{\prime}(x)$ is odd.
On the other hand if ϕ is odd then it follows that

$$
\begin{aligned}
\phi^{\prime}(-x) & =\lim _{h \rightarrow 0} \frac{\phi(-x+h)-\phi(-x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-\phi(x-h)+\phi(x)}{h} \\
& =\lim _{g \rightarrow 0} \frac{-\phi(x+g)+\phi(x)}{-g} \\
& =\lim _{g \rightarrow 0} \frac{\phi(x+g)-\phi(x)}{g} \\
& =\phi^{\prime}(x) .
\end{aligned}
$$

Thus $\phi^{\prime}(x)$ is even.
(b) Suppose that ϕ is integrable and let

$$
\Phi(x)=\int_{0}^{x} \phi(s) \mathrm{d} s
$$

If ϕ is even then

$$
\begin{aligned}
\Phi(-x) & =\int_{0}^{-x} \phi(s) \mathrm{d} s \\
= & -\int_{0}^{x} \phi(-t) \mathrm{d} t \\
= & -\int_{0}^{x} \phi(t) \mathrm{d} t \\
& =-\Phi(x),
\end{aligned}
$$

where to get from the first line to the second line we made the change of variables. Thus Φ is odd.

If ϕ is odd then

$$
\begin{array}{r}
\Phi(-x)=\int_{0}^{-x} \phi(s) \mathrm{d} s \\
=-\int_{0}^{x} \phi(-t) \mathrm{d} t \\
=\int_{0}^{x} \phi(t) \mathrm{d} t \\
=\Phi(x)
\end{array}
$$

where to get from the first line to the second line we made the change of variables. Thus Φ is even.
5.2.9. The odd coefficients are all zero.

If

$$
\phi(x)=\sum_{n} a_{n} \sin n x
$$

then $\phi(x)$ is odd. Thus its Fourier series over $(-\pi / 2, \pi / 2)$ is equal to its Fourier sine series over $(0, \pi / 2)$.
Thus

$$
\phi(x)=\sum_{n} b_{n} \sin 2 n x .
$$

It follows that

$$
\sum_{n} a_{n} \sin n x=\sum_{n} b_{n} \sin 2 n x
$$

If we integrate against $\sin m x$, where m is odd, the RHS is zero and so $a_{m}=0$ if m is odd.

Challenge Problems: (Just for fun)
5.2.15.

$$
|\sin x|
$$

is an even function. Thus the Fourier series only invovles cosine terms.

