HOMEWORK 0, DUE TWELTH OF NEVER

1. What are the first four terms of the power series of

$$
\frac{e^{2 z} \sin 5 z}{1-z}
$$

centred at 0 .
2. Show that the function

$$
z \longrightarrow \frac{e^{2 z} \sin (5 z-1)}{1-z}
$$

is holomorphic, except at 1 . Conclude that this function has a power series expansion based at any point a. What is the radius of convergence?
3. Write down the unique Möbius transformation carrying 0 to $i, 1$ to 1 and ∞ to -1 . What happens to the upper half plane \mathbb{H} ?
4. Calculate

$$
\oint_{|z-a|=r}(z-a)^{m} \mathrm{~d} z
$$

where m is an integer.
(i) Directly.
(ii) Using results of Cauchy.
5. Find all Laurent expansions of

$$
\frac{1}{\left(z^{2}-1\right)\left(z^{2}-9\right)},
$$

centred at 0 .
6. What types of singularities does

$$
\frac{z e^{z}}{z^{2}-1}
$$

have?
7. Calculate

$$
\operatorname{Res}_{0} \frac{\sin z}{z^{2}}
$$

Challenge Problems: (Just for fun)
8. Let

$$
M: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1} \quad \text { given by } \quad M(z)=\frac{a z+b}{c z+d}
$$

be a Möbius transformation. A fixed point p of M is a point of $\mathbb{P}^{1}=$ $\mathbb{C} \cup\{\infty\}$, a complex number or ∞, such that

$$
M(p)=p
$$

Show that the number of fixed points is one of
(1) 1 ;
(2) 2 ;
(3) Every point $p \in \mathbb{P}^{1}$.

Give examples in all three cases.
9. Let U be a region in the plane. Let f be a continuous function on U such that

$$
\int_{\gamma} f(z) \mathrm{d} z=0
$$

for every closed path in U.
Morera's theorem: Show that $f(z)$ is holomorphic. (Hint: try to define a function by the 'rule':

$$
F(z)=\int_{z_{0}}^{z} f(z) \mathrm{d} z .
$$

)
10. Let f_{1}, f_{2}, \ldots be a sequence of holomorphic functions which tends uniformly to a function f on a region U.
Show that f is holomorphic and that $f_{1}^{\prime}, f_{2}^{\prime}, \ldots$ tends uniformly to f^{\prime}.

