HOMEWORK 5, DUE WEDNESDAY MAY 6TH, 12PM

1. Show the following functions are harmonic and find harmonic conjugates:
(a)

$$
x^{2}-y^{2}
$$

(b)

$$
x y+3 x^{2} y-y^{3}
$$

(c)

$$
\sinh x \sin y
$$

(d)

$$
\frac{x}{x^{2}+y^{2}} .
$$

2. Show that if v is harmonic conjugate for u then $-u$ is a harmonic conjugate of v.
3. (a) Show that Laplace's equation in polar coordinates is

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0 .
$$

(b) Show that $\ln |z|$ is harmonic on the punctured plane $\mathbb{C} \backslash\{0\}$.
(c) Show that $\ln |z|$ has no conjugate harmonic function on the punctured plane $\mathbb{C} \backslash\{0\}$, but that it does on the plane minus the non-positive reals, $\mathbb{C} \backslash(-\infty, 0]$.
(d) Show that $u\left(r e^{i \theta}\right)=\theta \ln r$ is harmonic. Find a harmonic conjugate v for u, using the polar form of the Cauchy-Riemann equations. What is the holomorphic function $u+i v$?
4. Let u be a harmonic function on the annulus

$$
\{z \in \mathbb{C}|a<|z|<b\} .
$$

Show that there is a constant C such that $u(z)-C \ln |z|$ has a harmonic conjugate on the annulus. Show that this constant is

$$
C=\frac{r}{2 \pi} \int_{0}^{2 \pi} \frac{\partial u}{\partial r}\left(r e^{i \theta}\right) \mathrm{d} \theta,
$$

where $r \in(a, b)$.
5. Let U be a bounded region and let u be a harmonic function that extends continuously to the boundary ∂U of U.
Show that if $u \in[a, b]$ on ∂U then $u \in[a, b]$ on the whole of U.
6. Fix $n \geq 1, r>0$ and $\lambda=\rho e^{i \theta}$. What is the maximum modulus of $z^{n}+\lambda$ over the closed disk

$$
\{z \in \mathbb{C}||z| \leq r\} ?
$$

Where does $z^{n}+\lambda$ attain its maximum over this disk?
7. Let $f(z)$ be a holomorphic function on a region U that is nowhere zero on U.
(a) Show that if $|f(z)|$ attains its minimum on U then $f(z)$ is constant. (b) If U is bounded and $f(z)$ extends to a continuous function on the boundary of U then $|f(z)|$ attains its minimum on ∂U.
8. Let $f(z)$ be a bounded holomorphic function on the right half plane. Suppose that $f(z)$ extends continuously to the imaginary axis and that

$$
|f(i y)| \leq M
$$

for all points $i y$ on the imaginary axis. Show that

$$
\mid f(z) \leq M
$$

for all z in the right half plane. (Hint: consider $(z+1)^{-\epsilon} f(z)$ on a large half disk, where $\epsilon>0$ is small).

Challenge Problems: (Just for fun)
9. Prove the fundamental theorem of algebra by applying the maximum principle to $1 / p(z)$ on a disk of large radius.

