1. Show the following functions are harmonic and find harmonic conjugates:
 (a) \(x^2 - y^2 \)
 (b) \(xy + 3x^2y - y^3 \)
 (c) \(\sinh x \sin y \)
 (d) \(\frac{x}{x^2 + y^2} \)

2. Show that if \(v \) is harmonic conjugate for \(u \) then \(-u\) is a harmonic conjugate of \(v \).

3. (a) Show that Laplace’s equation in polar coordinates is
 \[
 \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} + \frac{\partial^2 u}{\partial \theta^2} = 0.
 \]

 (b) Show that \(\log |z| \) is harmonic on the punctured plane \(\mathbb{C} \setminus \{0\} \).
 (c) Show that \(\log |z| \) has no conjugate harmonic function on the punctured plane \(\mathbb{C} \setminus \{0\} \), but that it does on the plane minus the non-positive reals, \(\mathbb{C} \setminus (-\infty, 0] \).
 (d) Show that \(u(re^{i\theta}) = \theta \log r \) is harmonic. Find a harmonic conjugate \(v \) for \(u \), using the polar form of the Cauchy-Riemann equations. What is the holomorphic function \(u + iv \)?

4. Let \(u \) be a harmonic function on the annulus
 \[
 \{ z \in \mathbb{C} \mid a < |z| < b \}.
 \]
 Show that there is a constant \(C \) such that \(u(z) - C \log |z| \) has a harmonic conjugate on the annulus. Show that this constant is
 \[
 C = \frac{r}{2\pi} \int_0^{2\pi} \frac{\partial u}{\partial r}(re^{i\theta}) \, d\theta,
 \]
 where \(r \in (a, b) \).

5. Let \(U \) be a bounded region and let \(u \) be a harmonic function that extends continuously to the boundary \(\partial U \) of \(U \).
 Show that if \(u \in [a, b] \) on \(\partial U \) then \(u \in [a, b] \) on the whole of \(U \).
6. Fix \(n \geq 1, r > 0 \) and \(\lambda = \rho e^{i\theta} \). What is the maximum modulus of \(z^n + \lambda \) over the closed disk
\[
\{ z \in \mathbb{C} \mid |z| \leq r \}.
\]
Where does \(z^n + \lambda \) attain its maximum over this disk?

7. Let \(f(z) \) be a holomorphic function on a region \(U \) that is nowhere zero on \(U \).
 (a) Show that if \(|f(z)| \) attains its minimum on \(U \) then \(f(z) \) is constant.
 (b) If \(U \) is bounded and \(f(z) \) extends to a continuous function on the boundary of \(U \) then \(|f(z)| \) attains its minimum on \(\partial U \).

8. Let \(f(z) \) be a bounded holomorphic function on the right half plane. Suppose that \(f(z) \) extends continuously to the imaginary axis and that
 \[
 |f(iy)| \leq M
 \]
 for all points \(iy \) on the imaginary axis. Show that
 \[
 |f(z)| \leq M
 \]
 for all \(z \) in the right half plane. \((\text{Hint: consider } (z + 1)^{-\epsilon} f(z) \text{ on a large half disk, where } \epsilon > 0 \text{ is small}).\)

Challenge Problems: (Just for fun)

9. Prove the fundamental theorem of algebra by applying the maximum principle to \(1/p(z) \) on a disk of large radius.