HOMEWORK 8, DUE WEDNESDAY MAY 27TH, 12PM

1. Check that
(a)

$$
\frac{\partial}{\partial \psi}\left(2 \arctan \left(\frac{1+r}{1-r} \tan \frac{\psi}{2}\right)\right)=P_{r}(\psi)
$$

(b)
$\arctan \left(\frac{1+r}{1-r} \tan \frac{2 \pi-\theta}{2}\right)-\arctan \left(\frac{1+r}{1-r} \tan \frac{\pi-\theta}{2}\right)=\arctan \left(\frac{1-r^{2}}{2 r \sin \theta}\right)$.
2. Suppose that $f(z)=u(z)+i v(z)$ is a holomorphic function on the unit disk and that $u(z)$ extends to a continuous function on the closed unit disk. Show that

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(e^{i \phi}\right) \frac{e^{i \phi}+z}{e^{i \phi}-z} \mathrm{~d} \phi+i v(0)
$$

This is known as Schwarz's formula. It expresses a holomorphic function as an integral using only its real part on the boundary.
3. Show that
$u(r, \theta)=\frac{1}{\pi} \arctan \left(\frac{1-x^{2}-y^{2}}{(x-1)^{2}+(y-1)^{2}-1}\right) \quad$ where $\quad \arctan t \in[0, \pi]$
is the solution to Dirichlet's problem for the unit disk for the piecewise continuous function

$$
h\left(e^{i \phi}\right)= \begin{cases}1 & \text { if } \phi \in(0, \pi / 2) \\ 0 & \text { if } \phi \in(\pi / 2,2 \pi)\end{cases}
$$

(a) Using the Poisson kernel.
(b) Using a biholomorphic map to change the region to the upper half plane.
4. Show that
$u(r, \theta)=\frac{1}{\pi} \arctan \left(\frac{\left(1-x^{2}-y^{2}\right) y_{0}}{(x-1)^{2}+\left(y-y_{0}\right)^{2}-y_{0}^{2}}\right) \quad$ where $\quad \arctan t \in[0, \pi]$
is the solution to Dirichlet's problem for the unit disk for the piecewise continuous function

$$
h\left(e^{i \phi}\right)= \begin{cases}1 & \text { if } \phi \in\left(0,2 \theta_{0}\right) \\ 0 & \text { if } \phi \in\left(2 \theta_{0}, 2 \pi\right) \\ 1\end{cases}
$$

where $\theta_{0} \in(0, \pi / 2)$ and $y_{0}=\tan \theta_{0}$. Check that $u(r, \theta)$ has the correct behaviour at the boundary.
5. Let $\delta_{h}: \mathbb{R} \longrightarrow \mathbb{R}$ be the finite bump function

$$
\delta_{h}(x)= \begin{cases}\frac{1}{h} & \text { if } x \in[0, h] \\ 0 & \text { otherwise }\end{cases}
$$

Note that

$$
\int_{-\infty}^{\infty} \delta_{h}(x) \mathrm{d} x=1 .
$$

Show that

$$
\int_{0}^{2 \pi} P_{r}(\phi-\theta) \delta_{h}\left(\phi-\theta_{0}\right) \mathrm{d} \phi=P_{r}(c-\theta),
$$

where $c \in\left(\theta_{0}, \theta_{0}+h\right)$. Conclude that

$$
\lim _{h \rightarrow 0^{+}} \int_{0}^{2 \pi} P_{r}(\phi-\theta) \delta_{h}\left(\phi-\theta_{0}\right) \mathrm{d} \phi=P_{r}\left(\theta-\theta_{0}\right)
$$

Hence the Poisson kernel $P_{r}\left(\theta-\theta_{0}\right)$ is the limit, as h approaches zero from above, of the harmonic function on the unit disk whose boundary values are $2 \pi \delta_{h}\left(\theta-\theta_{0}\right)$.
6. (a) Show that

$$
1+2 \sum_{n=1}^{\infty} a^{n} \cos n \theta=\frac{1-a^{2}}{1-2 a \cos \theta+a^{b}} \quad \text { where } \quad a \in(-1,1)
$$

(Hint: realise the LHS as the real part of a geometric series.)
(b) Conclude that

$$
P_{r}(\psi)=1+2 \sum_{n=1}^{\infty} r^{n} \cos n \psi .
$$

(c) Show that the solution to Dirichlet's problem on the unit disk is given by

$$
u(r, \theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} r^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

where

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{0}^{2 \pi} h\left(e^{i \phi}\right) \cos n \phi \mathrm{~d} \phi \\
b_{n} & =\frac{1}{\pi} \int_{0}^{2 \pi} h\left(e^{i \phi}\right) \sin n \phi \mathrm{~d} \phi
\end{aligned}
$$

Challenge Problems: (Just for fun)

