13. Harmonic functions

Definition 13.1. Let $U \subset \mathbb{C}$ be a region in the plane. Let

$$
u: U \longrightarrow \mathbb{R}
$$

be a real valued function on U with continuous $2 n d$ order partial derivatives.

We say that u is harmonic if u satisfies Laplace's equation:

$$
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Laplace's equation is one of the most important partial differential equations of mathematical physics.

Theorem 13.2. If $f: U \longrightarrow \mathbb{C}$ is a holomorphic function on a region U and $f=u+i v$ then u and v are harmonic functions.

Proof. As f is holomorphic, it is infinitely differentiable. In particular u and v have continuous 2 nd order partial derivatives.
u and v satisfy the Cauchy-Riemann equations:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

It follows that

$$
\begin{aligned}
\Delta u & =\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial y}\right)-\frac{\partial}{\partial y}\left(\frac{\partial v}{\partial x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial y}\right)-\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial y}\right) \\
& =0 .
\end{aligned}
$$

Note that to get from the 3rd line to the 4th line we used the fact that the 2nd partial derivatives of v are continuous to conclude that the mixed partials are equal.

Definition 13.3. Let $u: U \longrightarrow \mathbb{R}$ be a harmonic function on a region U.

A harmonic function $v: U \longrightarrow \mathbb{R}$ is called a harmonic conjugate of u if $f=u+i v$ is holomorphic.

Note that if v is a harmonic conjugate of u and a is a complex number then $v+a$ is also a harmonic conjugate, as

$$
\begin{aligned}
u+i(v+a) & =u+i v+i a \\
& =f+i a
\end{aligned}
$$

is holomorphic. Conversely, if v and w are two harmonic conjugates of u then

$$
\begin{aligned}
i(w-v) & =(u+i v)-(u+i w) \\
& =f-g,
\end{aligned}
$$

is holomorphic, as it is the difference of two holomorphic functions. As $i(w-v)$ is purely imaginary and holomorphic, it must be constant. Thus $w=v+a$, for some complex number a.

Thus harmonic conjugates are unique up to adding a constant.
Example 13.4. Show that $u=x y$ is harmonic on the whole complex plane and find a harmonic conjugate.

It is clear that u has continuous 2nd partial derivatives. We have

$$
\frac{\partial u}{\partial x}=y \quad \text { and } \quad \frac{\partial u}{\partial y}=x
$$

It follows that

$$
\begin{aligned}
\Delta u & =\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} \\
& =0+0 \\
& =0
\end{aligned}
$$

Thus u is harmonic.
To find a harmonic conjugate, we solve the Cauchy-Riemann equations:

$$
v_{y}=y \quad \text { and } \quad v_{x}=-x .
$$

To solve the first partial differential equation we integrate both sides with respect to y. Thus

$$
v(x, y)=\frac{y^{2}}{2}+h(x)
$$

where $h(x)$ is an arbitrary function of x. If we plug this into the second equation then we get

$$
h^{\prime}(x)=-x
$$

Thus

$$
h(x)=-\frac{x^{2}}{2} .
$$

Hence

$$
v(x, y)=\frac{y^{2}}{2}-\frac{x^{2}}{2}
$$

Note that in fact

$$
f(z)=-i \frac{z^{2}}{2}
$$

has real part u and imaginary part v.
The same method show that we can find the harmonic conjugate v of any harmonic function u on a rectangle U whose sides are parallel to the axes.

Indeed pick a point $\left(x_{0}, y_{0}\right) \in U$. We start by integrating the first Cauchy-Riemann equation with respect to y to get

$$
v(x, y)=\int_{y_{0}}^{y} \frac{\partial u}{\partial x}(x, t) \mathrm{d} t+h(x)
$$

Here $h(x)$ is a constant of integration. Since we integrated with respect to y, this constant does not depend on y but it does depend on x.

If we plug this value into the 2nd Cauchy-Riemann equation then we get

$$
\begin{aligned}
\frac{\partial u}{\partial y}(x, y) & =-\frac{\partial}{\partial x} \int_{y_{0}}^{y} \frac{\partial u}{\partial x}(x, t) \mathrm{d} t-h^{\prime}(x) \\
& =-\int_{y_{0}}^{y} \frac{\partial^{2} u}{\partial x^{2}}(x, t) \mathrm{d} t-h^{\prime}(x) \\
& =\int_{y_{0}}^{y} \frac{\partial^{2} u}{\partial y^{2}}(x, t) \mathrm{d} t-h^{\prime}(x) \\
& =\frac{\partial u}{\partial y}(x, y)-\frac{\partial u}{\partial y}\left(x, y_{0}\right)-h^{\prime}(x)
\end{aligned}
$$

Hence

$$
h^{\prime}(x)=-\frac{\partial u}{\partial y}\left(x, y_{0}\right)
$$

Integrating both sides with respect to x we get

$$
h(x)=-\int_{x_{0}}^{x} \frac{\partial u}{\partial y}\left(s, y_{0}\right) \mathrm{d} s
$$

up to a constant.
Thus

$$
v(x, y)=\int_{y_{0}}^{y} \frac{\partial u}{\partial x}(x, t) \mathrm{d} t-\int_{x_{0}}^{x} \frac{\partial u}{\partial y}\left(s, y_{0}\right) \mathrm{d} s
$$

up to a constant.

Theorem 13.5. Let U be an open disk or an open rectangle with sides parallel to the axes.

Then every harmonic function on U has a harmonic conjugate.
Proof. We already saw a proof of this result for rectangles.
If U is an open disk then we use the same proof, except that we have no choice but to put $\left(x_{0}, y_{0}\right)$ at the centre of the circle. This way, given any point (x, y) in the open disk, we can get to (x, y) by first going from x_{0} up to x, so that we go from $\left(x_{0}, y_{0}\right)$ to $\left(x, y_{0}\right)$ and then go from y_{0} to y, so that we go from $\left(x, y_{0}\right)$ to (x, y).

This unambiguously defines a function $v(x, y)$ by integration, see the formula above. It is then clear that v is a harmonic conjugate of u.

