15. Holomorphic maps of the unit disc

Theorem 15.1 (Schwarz's Lemma). Let

$$
f: \Delta \longrightarrow \mathbb{C}
$$

be a holomorphic map on the unit disk.
If $|f(z)| \leq 1$ on the unit disk and $f(0)=0$ then

$$
|f(z)| \leq|z| \quad \text { on } \quad \Delta
$$

with equality at some point $a \in \Delta, a \neq 0$, if and only if $f(z)=\lambda z$, for some complex number λ with $|\lambda|=1$.

Proof. Consider the meromorphic function

$$
g: \Delta \longrightarrow \mathbb{C} \quad \text { given by } \quad g(z)=\frac{f(z)}{z} .
$$

It is clear that $g(z)$ is holomorphic, except possibly at 0 .
As $f(z)$ is zero at 0 , it follows that $f(z)=z h(z)$ where $h(z)$ is holomorphic at 0 . If we compare equations then we get $g(z)=h(z)$, so that $g(z)$ is in fact holomorphic at 0 .

Consider $g(z)$ on the closed disk of radius r, where $r \in(0,1) \cdot g(z)$ is holomorphic on this closed disk and so it is continuous on the boundary. It follows that it achieves its maximum on the boundary. But

$$
\begin{aligned}
|g(z)| & =\left|\frac{f(z)}{z}\right| \\
& =\frac{|f(z)|}{|z|} \\
& \leq \frac{1}{r},
\end{aligned}
$$

on the boundary. It follows that

$$
|g(z)| \leq \frac{1}{r}
$$

on the closed disk of radius r. If we let r approach 1 from below then we get

$$
|g(z)| \leq 1
$$

on the unit disk. But then

$$
|f(z)| \leq|z| \quad \text { on } \quad \Delta .
$$

Now suppose we get equality, so that

$$
|f(a)|=|a| .
$$

In this case $|g(a)|=1$ and so the strict maximum principle implies that g is constant. Suppose that $g(z)=\lambda$ for all z. Then

$$
f(z)=\lambda z \quad \text { where } \quad|\lambda|=1
$$

Here is a variant of Schwarz's Lemma with an arbitrary circle:
Lemma 15.2. If $f(z)$ is holomorphic on the open disk

$$
U=\{z \in \mathbb{C}| | z-a \mid<R\}
$$

of radius R centred about a,

$$
|f(z)| \leq M \quad \text { and } \quad f(a)=0
$$

then

$$
|f(z)| \leq \frac{M}{R}|z-a|
$$

on U, with equality if and only if $f(z)$ is a multiple of $z-a$.
Proof. The idea is to reduce this to Schwarz's Lemma. Consider the map

$$
\alpha: z \longrightarrow R z+a .
$$

This sends the unit disk to the disk U. Now consider the map

$$
\beta: z \longrightarrow z / M
$$

The sends the disk of radius M centred at 0 to the unit disk. Both α and β are Möbius transformations.

It follows that if we put

$$
g=\beta \circ f \circ \alpha: \Delta \longrightarrow \mathbb{C}
$$

then g is a holomorphic function, as it is the composition of holomorphic functions,

$$
\begin{aligned}
g(0) & =\beta(f(\alpha(0))) \\
& =\beta(f(a)) \\
& =\beta(0) \\
& =0,
\end{aligned}
$$

and

$$
|g(w)| \leq 1
$$

We apply (15.1) to the function g. We conclude that

$$
|g(w)| \leq|w|
$$

with equality if and only if $g(w)$ is a multiple of w. The inverse of β is

$$
z \underset{2}{\longrightarrow} M z
$$

If we apply the inverse of β to both sides we get

$$
|(f \circ \alpha)(w)| \leq|M||w|
$$

Pick $z \in U$. If we put

$$
w=\frac{z-a}{R},
$$

then $w \in \Delta$ and $\alpha(w)=z$. We have

$$
\begin{aligned}
|f(z)| & =|f(\alpha(w))| \\
& \leq M|w| \\
& =\frac{M}{R}|z-a|
\end{aligned}
$$

Now suppose we have equality. Then $|g(w)|=|w|$, so that

$$
g(w)=\lambda w
$$

for some complex number of unit length. It follows that

$$
\begin{aligned}
f(z) & =M g(w) \\
& =(M \lambda) w \\
& =\frac{M \lambda}{R}(z-a) .
\end{aligned}
$$

There is also a version involving derivatives:
Theorem 15.3. Let

$$
f: \Delta \longrightarrow \mathbb{C}
$$

be a holomorphic map on the unit disk.
If $|f(z)| \leq 1$ on the unit disk and $f(0)=0$ then

$$
\left|f^{\prime}(0)\right| \leq 1
$$

with equality if and only if $f(z)=\lambda z$ for some complex number λ with $|\lambda|=1$.

Proof. We have

$$
\begin{aligned}
\left|f^{\prime}(0)\right| & =\left|\lim _{z \rightarrow 0} \frac{f(z)}{z}\right| \\
& =\lim _{z \rightarrow 0}\left|\frac{f(z)}{z}\right| \\
& =\lim _{z \rightarrow 0} \frac{|f(z)|}{|z|} \\
& \leq \lim _{z \rightarrow 0} 1 \\
& =1 .
\end{aligned}
$$

This establishes the inequality. Now suppose we have equality.
As in the proof of (15.1), we have

$$
f(z)=z g(z)
$$

where $g(z)$ is holomorphic. It follows that

$$
f^{\prime}(0)=g(0)
$$

If

$$
\left|f^{\prime}(0)\right|=1
$$

then

$$
|g(0)|=1
$$

and so $g(z)$ is constant, by the strict maximum principle. But then $f(z)=\lambda z$, where $\lambda=f^{\prime}(0)$.

