18. Meromorphic versus Rational functions

One obvious way to give a meromorphic function on \mathbb{C} is to write down a rational function, the quotient of two polynomials. It is natural to wonder to what extent these give all meromorphic functions on \mathbb{C} :

Theorem 18.1. Let f be a meromorphic function on the whole of \mathbb{C}.
Then f is a rational function if and only if it has at worse a pole at infinity.

Here we allow the possibility that f is holomorphic at infinity.
It is clear that we need the condition at infinity. For example the exponential function

$$
z \longrightarrow e^{z}
$$

is an entire function but it is is not a rational function. In fact it has an essential singularity at infinity.

We will need:
Definition 18.2. Let f be a holomorphic function with an isolated singularity at a.

The principal part of f at a is the negative part of the Laurent series expansion of f at a.

Proof of (18.1). One direction is clear. If

$$
f(z)=\frac{p(z)}{q(z)}
$$

is a rational function then

$$
f\left(\frac{1}{z}\right)=\frac{p(1 / z)}{q(1 / z)}
$$

The RHS expands to a rational function in z. In particular $f(z)$ has a pole at infinity.

Now suppose that $f(z)$ is a meromorphic function with a pole at infinity. First observe that $f(z)$ has only finitely many singularities. Isolated singularities cannot accumulate anywhere. If there were infinitely many singularities their modulus would have to go to infinity. But as we have a pole at infinity this cannot happen either.

Let $w=1 / z$. By assumption

$$
f(w)=\frac{a_{-n}}{w^{n}}+\frac{a_{-n+1}}{w^{n-1}}+\cdots+a_{0}+a_{1} w+\ldots
$$

The principal part at $w=0$ is then

$$
\frac{a_{-n}}{w^{n}}+\frac{a_{-n+1}}{w^{n-1}}+\cdots+\frac{a_{-2}}{w^{2}}+\frac{a_{-1}}{w}
$$

If we subsitute back in $z=1 / w$ then we get a polynomial in $z, p_{\infty}(z)$.
Let $a_{1}, a_{2}, \ldots, a_{m}$ be the finitely many other singular points. Let $p_{a_{i}}(z)$ be the principal part at a_{i}. Then $p_{a_{i}}(z)$ is a polynomial in $1 /(z-$ $\left.a_{i}\right)$.

Consider

$$
g(z)=f(z)-p_{\infty}(z)-p_{a_{1}}(z)-p_{a_{2}}(z)-\cdots-p_{a_{m}}(z) .
$$

Note that

$$
p_{\infty}(z)+p_{a_{1}}(z)+p_{a_{2}}(z)+\cdots+p_{a_{m}}(z) .
$$

is a rational function in z, since it is a sum of rational functions. In particular it is a meromorphic function so that $g(z)$ is a meromorphic function.

The only possible poles of $g(z)$ are at $a_{1}, a_{2}, \ldots, a_{m}$. But by construction the principal part of $g(z)$ at a_{i} is zero. Therefore $g(z)$ is holomorphic at a_{i}, so that it is an entire function.

On the other hand, $g(z)$ does not have a pole at infinity either. Therefore $g(z)$ is bounded as z approaches infinity. But then Liouville's theorem implies that $g(z)$ is a constant c. It follows that

$$
f(z)=p_{\infty}(z)+p_{a_{1}}(z)+p_{a_{2}}(z)+\cdots+p_{a_{m}}(z)+c,
$$

is a rational function.
It seems worth pointing out the decomposition above in p_{∞} and $p_{a_{1}}$, $p_{a_{2}}, \ldots$, is essentially the decomposition of a rational function into partial fractions.

Example 18.3. Obtain the partial fraction decomposition of

$$
\frac{z^{3}}{z^{2}+1} .
$$

The first thing to do is figure out the term $p_{\infty}(z)$. We could subsitute $w=1 / z$, find the Laurent series expansion and then isolate the principal part. Much easier is to use the division algorithm. We try to divide $z^{2}+1$ into z^{3}. We get z with a remainder of

$$
z^{3}-z\left(z^{2}+1\right)=-z \quad \text { so that } \quad \frac{z^{3}}{z^{2}+1}=z-\frac{z}{z^{2}+1} .
$$

Thus $p_{\infty}(z)=z$. Now

$$
-\frac{z}{z^{2}+1}
$$

has poles at $\pm i$. We have simple poles there and so

$$
\begin{aligned}
-\frac{z}{z^{2}+1} & =p_{i}(z)+p_{-i}(z) \\
& =\frac{\alpha}{z-i}+\frac{\beta}{z+i}
\end{aligned}
$$

Now α is the residue at i and β is the residue at $-i$. We have

$$
\begin{aligned}
\alpha & =\lim _{z \rightarrow i}-\frac{z}{2 z} \\
& =-\frac{1}{2} .
\end{aligned}
$$

It is clear the answer won't change at $-i$. Thus

$$
\frac{z^{3}}{z^{2}+1}=z-\frac{1}{2} \frac{1}{z-i}-\frac{1}{2} \frac{1}{z+i} .
$$

Of course we could do the last step using one of the usual methods.

