
19. Dirichlet problem and the Poisson kernel

Suppose we are given a region U . Suppose that u is a harmonic
function on U that extends to a continuous function on the boundary.

The Dirichlet problem is to reverse this process, starting with the
continuous function on the boundary to exend this continuous function
to a harmonic function on the whole region. This is one of the most
well-studied boundary value problems in mathematics.

It seems worth starting with the following observation.

Theorem 19.1. Let U be a bounded region and let h be a continuous
function on the boundary of U ,

h : ∂U −→ R.

Then there is at most one harmonic function u on U which extends
to a continuous function on U ∪ ∂U such that the restriction of u to
the boundary ∂U is equal to the function h on the boundary.

Proof. We first show that if h is identically zero then u is identically
zero.

By the maximum principle applied to u we have that the maximum
of u on U ∪ ∂U is achieved on the boundary. As u is zero on the
boundary it follows that u ≤ 0 on U .

By the minimum principle applied to u (or what comes to the same
thing, the maximum principle applied to −u) the minimum of u on
U ∪ ∂U is achieved on the boundary. As u is zero on the boundary it
follows that u ≥ 0 on U .

As 0 ≤ u ≤ 0 it follows that u is identically zero.
Now we turn to the general case. Let u1 and u2 be two harmonic

functions on U which both extend to continuous functions on U ∪ ∂U
and which both restrict to h on the boundary.

Then u = u1 − u2 is a harmonic function on U which extends to a
continuous function on U ∪ ∂U and which restricts to h−h = 0 on the
boundary. By what we already proved u is identically zero. But then
u1 = u2. �

It is a general phenomena in mathematics that problems with unique
solutions behave much better than problems whose solutions are not
unique. We start with the simplest region we know, the unit disk.

We start with Cauchy’s integral formula,

f(z) =
1

2πi

∫
|w|=1

f(w) dw

w − z
,
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where f(z) is a holomorphic function on the closed unit disk. We write
z in polar coordinates,

z = reiθ.

Let

ζ = r−1eiθ.

ζ is called the inverse point of z, in the circle |w| = 1. It lies on the
same line through the centre of the circle as z but it lies on a different
side of the circle and we have

|z| · |ζ| = 1.

Since ζ is outside the circle, we have∫
|w|=1

f(w) dw

w − ζ
= 0.

Combining this with the previous expression we get

f(z) =
1

2πi

∫
|w|=1

(
1

w − z
− 1

w − ζ

)
f(w) dw.

If use the standard parametrisation w = eiφ then dw = iw dφ and we
get

f(z) =
1

2π

∫ 2π

0

(
w

w − z
− w

w − ζ

)
f(w) dφ,

where we retain the symbol w for notational convenience. Note that

ζ =
1

z̄
and w̄ =

1

w
,

since ζ is the inverse point and w is its own inverse point. It follows
that the expression in brackets is

w

w − z
− w

w − ζ
=

w

w − z
− w

w − 1/z̄

=
w

w − z
− z̄

z̄ − w̄
=

w

w − z
+

z̄

w̄ − z̄

=
1− r2

|w − z|2
.

It follows that we can rewrite Cauchy’s integral formula as

f(z) =
1− r2

2π

∫ 2π

0

f(eiφ)

|w − z|2
dφ.
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A priori this is only valid for r 6= 0, that is z 6= 0, since the inverse
point of 0 is ∞, but in fact it does gives the correct formula even if
r = 0.

Now the expression

|w − z|
is the distance between the point z and the point w on the unit circle.
We can use the law of cosines to get

|w − z|2 = 1− 2r cos(φ− θ) + r2.

Finally, if u(r, θ) is the real part of f then we get the Poisson integral
formula

u(r, θ) =
1

2π

∫ 2π

0

(1− r2)u(1, φ)

1− 2r cos(φ− θ) + r2
dφ.

Note that this integral expresses u(r, θ) in terms of the values u(1, φ)
of u on the boundary of the circle. The factor

Pr(φ− θ) =
1− r2

1− 2r cos(φ− θ) + r2

is called the Poisson kernel. Of course we also have

Pr(φ− θ) =
1− r2

|w − z|2
.

The Poisson kernel enjoys some basic properties.

Lemma 19.2.

(a) Pr(ψ) > 0.
(b)

Pr(φ− θ) = Re

(
w + z

w − z

)
.

(c) If we fix w then Pr(φ− θ) is a harmonic function on the unit disk.
(d) Pr(ψ) is an even, periodic function of ψ with period 2π.
(e) P0(ψ) = 1.
(f)

1

2π

∫ 2π

0

Pr(φ− θ) dφ = 1.

Proof. (d) and (e) follow from

Pr(ψ) =
1− r2

1− 2r cosψ + r2
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For (a) note that the numerator is positive. On the other hand,

1− 2r cosψ + r2 = 1− 2r + r2 + 2r − 2r cosψ

= (r − 1)2 + 2r(1− cosψ),

so that the denominator is positive as well.
(b) We already showed that

Pr(φ− θ) =
w

w − z
+

z̄

w̄ − z̄
.

It follows that the RHS is real.
Note that

Re

(
z̄

w̄ − z̄

)
= Re

(
z

w − z

)
.

Thus

Pr(φ− θ) = Re

(
w

w − z
+

z̄

w̄ − z̄

)
= Re

(
w

w − z
+

z

w − z

)
= Re

(
w + z

w − z

)
.

(c) Pr(φ − θ) is harmonic as it is the real part of a holomorphic
function on the unit circle.

Note that the function u(r, θ) = 1 is a harmonic extension to the
function u(1, θ) = 1 on the circle |z| = 1. Thus

1 = u(r, θ)

=
1

2π

∫ 2π

0

(1− r2)u(1, φ)

1− 2r cos(φ− θ) + r2
dφ

=
1

2π

∫ 2π

0

1− r2

1− 2r cos(φ− θ) + r2
dφ

=
1

2π

∫ 2π

0

Pr(φ− θ) dφ = 1. �
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