
22. The Schwarz Reflection Principle

First a little bit of notation.

Definition 22.1. The reflection of a region U about the real axis is

U∗ = { z̄ | z ∈ U }.
If u : U −→ R is a real valued function on U then define

u∗ : U∗ −→ R by u∗(z) = u(z̄).

We say that U is symmetric about the real axis if U = U∗.

Example 22.2. The unit circle is symmetric about the real axis.

Lemma 22.3. If u is a harmonic function on a region U then u∗ is
harmonic on U∗.

Proof. There are two ways to see this.
For the first way note that u satisfies the mean value property as u

is harmonic. But then u∗ also satisfies the mean value property which
implies that u∗ is harmonic.

For the second note that complex conjugation replaces (x, y) by
(x,−y). This leaves the Laplacian unchanged; indeed nothing happens
to x and so

∂2

∂x2

is unchanged. The change in sign in y flips the sign of

∂

∂y

and so it also leaves
∂2

∂y2

unchanged. �

Theorem 22.4. Let U be a region symmetric about the real axis and
let

U+ = { z ∈ U | Im z > 0 }
be the part of U in the upper half plane H.

If u(z) is a harmonic function on U+ such that

lim
Im(z)→0+

u(z) = 0

as z approaches the real axis from above then u(z) extends to a har-
monic function u = ue on U which satisfies

u(z̄) = −u(z) for all z ∈ U.
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Proof. We can decompose U into three disjoint sets

U+ = { z ∈ U | Im z > 0 } U− = { z ∈ U | Im z < 0 } and U0 = { z ∈ U | Im z = 0 }.
We extend u to the whole of U in the obvious way:

ue(z) =


u(z) if z ∈ U+

−u(z̄) if z ∈ U−

0 if z ∈ U0.

Then the restriction of ue to U− is −u∗. It follows that ue is harmonic
on U−.

It is then clear that ue is continuous on U . We now check that ue

is harmonic. It suffices to check that ue has the mean value property.
Let z0 ∈ U . If z0 ∈ U+ ∪ U− then it is clear that u satisfies the mean
value property for small enough disks centred around z0.

Now suppose that z0 ∈ U0. If we have a disk centred around z0 then
half of the disk is above the real axis and half of it is below. Since the
integral around the bottom half is minus the integral around the top
half, the average value is zero. But this is also the value of ue(z0). It
follows that ue satisfies the mean value property. In particular ue is
harmonic. �

There is also a reflection principle for holomorphic functions.

Lemma 22.5. If f is a holomorphic function on a region U then

g(z) = f(z̄)

is holomorphic on U∗.

Proof. There are three ways to see this.
For the first we may write f(z) = u(z) + iv(z). In this case g(z) =

u(z̄)− iv(z̄) = p(z) + iq(z). We have

px = ux

= vy

= qy.

Here we used the Cauchy-Riemann equations for u and v to get from
the first line to the second line. Note that there are two minuses to get
from the second line to the third line.

We also have

py = −uy

= vx

= −qx.
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Thus p and q satisfy the Cauchy-Riemann equations and g(z) is holo-
morphic.

For the second we may write down a power series expansion for
f(z) locally about a point a, using the fact that holomorphic implies
analytic:

f(z) = a0 + a1(z − a) + a2(z − a)2 + a3(z − a)3 + . . . .

In this case

g(z) = b0 + b1(z − b) + b2(z − b)2 + b3(z − b)3 + . . . ,

where b = ā and bi = āi, with the same radius of convergence. Thus
g(z) is analytic, so that it is holomorphic.

For the third, assume that f(z) has nowhere vanishing derivative.
Then f(z) is conformal. Now complex conjugation reverses angles, so
that g(z) is conformal, as we reverse angles twice, once for z̄ and once
for f̄ . Thus g(z) is holomorphic, except at the points corresponding to
the zeroes of f ′(z). Now the zeroes of f(z) are isolated, so that g(z) has
isolated singularities. As g(z) is continuous near the singular points,
it is certainly bounded, and so g(z) has removable singularities. Thus
g(z) is holomorphic. �

Theorem 22.6. Let U be a region symmetric about the real axis and
let

U+ = { z ∈ U | Im z > 0 }
be the part of U in the upper half plane H.

If f(z) is a holomorphic function on U+ such that

lim
Im(z)→0+

Im f(z) = 0

as z approaches the real axis from above then f(z) extends to a holo-
morphic function f = f e on U which satisfies

f(z̄) = f(z) for all z ∈ U.

Proof. First extend f(z) to a holomorphic function on U− by using
(22.5):

f e(z) = f(z̄) for all z ∈ U−.

We have to check that we can extend f across the real line.
Suppose that we write f(z) = u(z) + iv(z) on U+. By assumption

lim
Im(z)→0+

v(z) = 0

and so v(z) extends to a harmonic function on the whole of U such
that

v(z̄) = −v(z).
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Note that v is the imaginary part of f on U−.
Fix a point a ∈ U0 and pick a small disk D centred around a. As v(z)

is harmonic it has a harmonic conjugate on D. This harmonic conjugate
differs by a constant from u(z) on D ∩ U+. Thus u(z) extends to a
harmonic function on D and so f(z) extends to a holomorphic function
on D.

By the same token, the function f e(z) = f(z̄) is also holomorphic
on D, it has the same inaginary part as f(z) and agrees with f(z) on
D ∩ U0. Thus

f(z̄) = f(z) for all z ∈ D.

This implies that f e is holomorphic on the whole of U . �
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