
26. Riemnann Mapping Theorem: II

We end the course with an indication of how to prove the Riemann
mapping theorem. In fact we sketch two approaches.

We begin with a basic fact that is used in both approaches:

Theorem 26.1. Every harmonic function u on a simply connected
region U has a harmonic conjugate v on U .

The proof of (26.1) is not particularly hard. Recall that we con-
structed harmonic conjugates in Lecture 14 on rectangles and open
disks by explicitly solving the Cauchy-Riemann equations. This in-
volved integration over a carefully selected path. For a simply con-
nected region U we start with a point b ∈ U and we pick any path to a
general point z. The fact that U is simply connected implies that the
choice of path does not matter.

The first approach is relatively elementary, apart from one step. Let
U be a simply connected region, not the whole complex plane. Pick a
point a ∈ U . Let F be the set of all injective (or one to one) holomor-
phic functions from U to ∆ that send a to 0 such that f ′(a) > 0:

F = { f : U −→ ∆ | f is holomorphic, injective, f(a) = 0 and f ′(a) > 0. }
Note that we are looking for an element f of F that is also surjective

(or onto). The basic idea is that if we are given an element g of F that
is not surjective then we can improve g by increasing its image. Thus
we are looking for one of the best elements of F . The goal is to make
this idea precise.

The first step is to show that F is non-empty, that is, to construct
an element of F .

Lemma 26.2. Let U be a simply connected region and suppose that
c /∈ U .

Then we can choose a holomorphic branch h(z) =
√
z − c of the

square root. h(z) is injective, the map h : U −→ h(U) is biholomorphic
and h(U) and −h(U) are disjoint.

Proof. Consider the function

u(z) = ln(z − c).
u is a harmonic function on U . (26.1) implies that u has a harmonic
conjugate v. The function

g(z) = u(z) + iv(z) = log(z − c)
defines a holomorphic branch of the logarithm. The function

h(z) = eg(z)/2

1



is then a holomorphic branch of
√
z − c.

Suppose that h(z1) = h(z2). Squaring both sides we get

z1 − c = h2(z1)

= h2(z2)

= z2 − c.
Adding a to both sides we get z1 = z2. Thus h(z) is injective. It is
clear that the derivative of h is nowhere zero. Thus h : U −→ h(U) is
biholomorphic.

Now suppose that
h(z1) = −h(z2)

is a common point of h(U) and −h(U). Squaring both sides we get

z1 − c = h2(z1)

= h2(z2)

= z2 − c.
Adding c to both sides we get z1 = z2. This is clearly nonsense and so
h(U) and −h(U) are disjoint. �

Lemma 26.3. F is non-empty.

Proof. Suppose that the closed disk of radius ρ centred about d is
contained in h(U).

Then every point of −h(U) is further than distance ρ from d:

|d+ h(z)| > ρ for all z ∈ U.
It follows that

ρ

|d+ h(z)|
< 1 for all z ∈ U.

But then the holomorphic map

z −→ ρ

h(z) + d

sends U into ∆.
Suppose that f(a) = b. Consider the map

z −→ z − b
1− b̄z

This is a biholomorphic map of the unit disk that sends b to 0. The
composition with the map above sends a to 0. Finally, if the argument
of the derivative at a is θ then the rotation

z −→ e−iθz
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rotates the derivative back to a positive real. Thus F is non-empty. �

Now we show that if f ∈ F and f is not surjective onto ∆ then we
can do better:

Lemma 26.4. Let V ⊂ ∆ be a simply connected region that contains
0.

If V 6= ∆ then there is a biholomorphic map

ψ : V −→ W

where W ⊂ ∆, ψ(0) = 0 and ψ′(0) > 1.

Proof. Pick b /∈ V . Let

g : ∆ −→ ∆

be the biholomorphic map

g(z) =
z − b
1− b̄z

.

This sends b to 0 so that the image g(V ) is a simply connected region
that does not contain 0. (26.2) implies that we can define a holomorphic
branch of the square root function on g(V ), h(z) =

√
z. Finally let

f : ∆ −→ ∆

be the biholomorphic map

f(z) =
z − h(−b)
1− h(−b)z

.

Then f sends h(−b) = (h ◦ g)(0) to 0. Thus the composition is a
biholomorphic map of

ψ = f ◦ h ◦ g : V −→ W

such that ψ(0) = 0. Possibly applying a rotation we may assume that
ψ′(0) > 0.

We have

g′(0) = 1− |b|2

and

f ′(h(−b)) =
1

1− |h(−b)|2
.

Now

h2(z) = z.

Thus

h′(z) =
1

2h(z)
and so h′(−b) =

1

2h(−b)
.
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If r = | − b| then |h(−b)| = r1/2. It follows that

|ψ′(0)| = |f ′(h(−b))| · |h′(−b)| · |g′(0)|

=
1− |b|2

2|h(−b)| · (1− |h(−b)|2)

=
1− r2

2r1/2 · (1− r)

=
1 + r

2r1/2

=
r−1/2 + r1/2

2
> 1. �

Note that the last inequality is an easy result from one variable
calculus

x+
1

x
> 2 for x ∈ (0, 1).

The best element of F is the function with the biggest derivative at
0. It is non-trivial result that F contains such an element:

Theorem 26.5. There is an element f ∈ F such that if g ∈ F then

f ′(0) ≥ g′(0).

We now give a proof of the Riemann mapping theorem:

Proof of 24.1. Pick f ∈ F with the largest derivative at 0. Suppose
that f is not surjective. Pick b /∈ V = f(U). Then (26.4) implies we
can find an injective holomorphic function

ψ : V −→ ∆

such that ψ′(0) > 1. The composition g = ψ ◦ f is holomorphic,
injective, g(a) = 0 and g′(a) > 0. Thus g ∈ F . But

g′(a) = ψ′(0) · f ′(a)

> f ′(a),

which is not possible, by our choice of f . Thus f must be surjective so
that f is biholomorphic. �

The second proof of the Riemann mapping theorem relies on the fact
that we can solve Dirichlet’s problem for U . As in the first proof, we
may assume that U is bounded. There is no harm in assuming that
0 ∈ U . Consider the continuous function ln |z| on the boundary. As
we are assuming that we can solve Dirichlet’s problem on U there is
a harmonic function u on U extends to a continuous function on the
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boundary where it is ln |z|. As U is simply connected it has a harmonic
conjugate v(z).

Consider
f(z) = ze−(u(z)+iv(z)).

Then f(z) is a holomorphic function and on the boundary we have

|f(z)| = |ze−(u(z)+iv(z))|
= |z| · |e−(u(z)| · |e−iv(z))|
= |z| · |e− log z|
= 1.

Thus |f(z)| < 1 on U by the maximum principle. Thus f : U −→ ∆ is
holomorphic. f(z) has only one zero, at zero.

Suppose that b ∈ ∆. Pick r > |b| and consider applying the argument
principle to

f(z)− b
on the circle of radius r centred at 0 we see that f(z) is bijective. Thus
f(z) is biholomorphic.
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