26. Riemnann Mapping Theorem: II

We end the course with an indication of how to prove the Riemann mapping theorem. In fact we sketch two approaches.

We begin with a basic fact that is used in both approaches:
Theorem 26.1. Every harmonic function u on a simply connected region U has a harmonic conjugate v on U.

The proof of (26.1) is not particularly hard. Recall that we constructed harmonic conjugates in Lecture 14 on rectangles and open disks by explicitly solving the Cauchy-Riemann equations. This involved integration over a carefully selected path. For a simply connected region U we start with a point $b \in U$ and we pick any path to a general point z. The fact that U is simply connected implies that the choice of path does not matter.

The first approach is relatively elementary, apart from one step. Let U be a simply connected region, not the whole complex plane. Pick a point $a \in U$. Let \mathcal{F} be the set of all injective (or one to one) holomorphic functions from U to Δ that send a to 0 such that $f^{\prime}(a)>0$:
$\mathcal{F}=\left\{f: U \longrightarrow \Delta \mid f\right.$ is holomorphic, injective, $f(a)=0$ and $\left.f^{\prime}(a)>0.\right\}$
Note that we are looking for an element f of \mathcal{F} that is also surjective (or onto). The basic idea is that if we are given an element g of \mathcal{F} that is not surjective then we can improve g by increasing its image. Thus we are looking for one of the best elements of \mathcal{F}. The goal is to make this idea precise.

The first step is to show that \mathcal{F} is non-empty, that is, to construct an element of \mathcal{F}.

Lemma 26.2. Let U be a simply connected region and suppose that $c \notin U$.

Then we can choose a holomorphic branch $h(z)=\sqrt{z-c}$ of the square root. $h(z)$ is injective, the map $h: U \longrightarrow h(U)$ is biholomorphic and $h(U)$ and $-h(U)$ are disjoint.

Proof. Consider the function

$$
u(z)=\ln (z-c) .
$$

u is a harmonic function on U. (26.1) implies that u has a harmonic conjugate v. The function

$$
g(z)=u(z)+i v(z)=\log (z-c)
$$

defines a holomorphic branch of the logarithm. The function

$$
\begin{gathered}
h(z)=e^{g(z) / 2} \\
1
\end{gathered}
$$

is then a holomorphic branch of $\sqrt{z-c}$.
Suppose that $h\left(z_{1}\right)=h\left(z_{2}\right)$. Squaring both sides we get

$$
\begin{aligned}
z_{1}-c & =h^{2}\left(z_{1}\right) \\
& =h^{2}\left(z_{2}\right) \\
& =z_{2}-c .
\end{aligned}
$$

Adding a to both sides we get $z_{1}=z_{2}$. Thus $h(z)$ is injective. It is clear that the derivative of h is nowhere zero. Thus $h: U \longrightarrow h(U)$ is biholomorphic.

Now suppose that

$$
h\left(z_{1}\right)=-h\left(z_{2}\right)
$$

is a common point of $h(U)$ and $-h(U)$. Squaring both sides we get

$$
\begin{aligned}
z_{1}-c & =h^{2}\left(z_{1}\right) \\
& =h^{2}\left(z_{2}\right) \\
& =z_{2}-c .
\end{aligned}
$$

Adding c to both sides we get $z_{1}=z_{2}$. This is clearly nonsense and so $h(U)$ and $-h(U)$ are disjoint.

Lemma 26.3. \mathcal{F} is non-empty.
Proof. Suppose that the closed disk of radius ρ centred about d is contained in $h(U)$.

Then every point of $-h(U)$ is further than distance ρ from d :

$$
|d+h(z)|>\rho \quad \text { for all } \quad z \in U .
$$

It follows that

$$
\frac{\rho}{|d+h(z)|}<1 \quad \text { for all } \quad z \in U
$$

But then the holomorphic map

$$
z \longrightarrow \frac{\rho}{h(z)+d}
$$

sends U into Δ.
Suppose that $f(a)=b$. Consider the map

$$
z \longrightarrow \frac{z-b}{1-\bar{b} z}
$$

This is a biholomorphic map of the unit disk that sends b to 0 . The composition with the map above sends a to 0 . Finally, if the argument of the derivative at a is θ then the rotation

$$
z \longrightarrow \underset{2}{\longrightarrow} e^{-i \theta} z
$$

rotates the derivative back to a positive real. Thus \mathcal{F} is non-empty.
Now we show that if $f \in \mathcal{F}$ and f is not surjective onto Δ then we can do better:

Lemma 26.4. Let $V \subset \Delta$ be a simply connected region that contains 0.

If $V \neq \Delta$ then there is a biholomorphic map

$$
\psi: V \longrightarrow W
$$

where $W \subset \Delta, \psi(0)=0$ and $\psi^{\prime}(0)>1$.
Proof. Pick $b \notin V$. Let

$$
g: \Delta \longrightarrow \Delta
$$

be the biholomorphic map

$$
g(z)=\frac{z-b}{1-\bar{b} z} .
$$

This sends b to 0 so that the image $g(V)$ is a simply connected region that does not contain 0 . (26.2) implies that we can define a holomorphic branch of the square root function on $g(V), h(z)=\sqrt{z}$. Finally let

$$
f: \Delta \longrightarrow \Delta
$$

be the biholomorphic map

$$
f(z)=\frac{z-h(-b)}{1-\overline{h(-b)} z} .
$$

Then f sends $h(-b)=(h \circ g)(0)$ to 0 . Thus the composition is a biholomorphic map of

$$
\psi=f \circ h \circ g: V \longrightarrow W
$$

such that $\psi(0)=0$. Possibly applying a rotation we may assume that $\psi^{\prime}(0)>0$.

We have

$$
g^{\prime}(0)=1-|b|^{2}
$$

and

$$
f^{\prime}(h(-b))=\frac{1}{1-|h(-b)|^{2}} .
$$

Now

$$
h^{2}(z)=z .
$$

Thus

$$
h^{\prime}(z)=\frac{1}{2 h(z)} \quad \text { and so } \quad h^{\prime}(-b)=\frac{1}{2 h(-b)} .
$$

If $r=|-b|$ then $|h(-b)|=r^{1 / 2}$. It follows that

$$
\begin{aligned}
\left|\psi^{\prime}(0)\right| & =\left|f^{\prime}(h(-b))\right| \cdot\left|h^{\prime}(-b)\right| \cdot\left|g^{\prime}(0)\right| \\
& =\frac{1-|b|^{2}}{2|h(-b)| \cdot\left(1-|h(-b)|^{2}\right)} \\
& =\frac{1-r^{2}}{2 r^{1 / 2} \cdot(1-r)} \\
& =\frac{1+r}{2 r^{1 / 2}} \\
& =\frac{r^{-1 / 2}+r^{1 / 2}}{2} \\
& >1
\end{aligned}
$$

Note that the last inequality is an easy result from one variable calculus

$$
x+\frac{1}{x}>2 \quad \text { for } \quad x \in(0,1)
$$

The best element of \mathcal{F} is the function with the biggest derivative at 0 . It is non-trivial result that \mathcal{F} contains such an element:
Theorem 26.5. There is an element $f \in \mathcal{F}$ such that if $g \in \mathcal{F}$ then

$$
f^{\prime}(0) \geq g^{\prime}(0)
$$

We now give a proof of the Riemann mapping theorem:
Proof of 24.1. Pick $f \in \mathcal{F}$ with the largest derivative at 0 . Suppose that f is not surjective. Pick $b \notin V=f(U)$. Then (26.4) implies we can find an injective holomorphic function

$$
\psi: V \longrightarrow \Delta
$$

such that $\psi^{\prime}(0)>1$. The composition $g=\psi \circ f$ is holomorphic, injective, $g(a)=0$ and $g^{\prime}(a)>0$. Thus $g \in \mathcal{F}$. But

$$
\begin{aligned}
g^{\prime}(a) & =\psi^{\prime}(0) \cdot f^{\prime}(a) \\
& >f^{\prime}(a),
\end{aligned}
$$

which is not possible, by our choice of f. Thus f must be surjective so that f is biholomorphic.

The second proof of the Riemann mapping theorem relies on the fact that we can solve Dirichlet's problem for U. As in the first proof, we may assume that U is bounded. There is no harm in assuming that $0 \in U$. Consider the continuous function $\ln |z|$ on the boundary. As we are assuming that we can solve Dirichlet's problem on U there is a harmonic function u on U extends to a continuous function on the
boundary where it is $\ln |z|$. As U is simply connected it has a harmonic conjugate $v(z)$.

Consider

$$
f(z)=z e^{-(u(z)+i v(z))}
$$

Then $f(z)$ is a holomorphic function and on the boundary we have

$$
\begin{aligned}
|f(z)| & =\left|z e^{-(u(z)+i v(z))}\right| \\
& =|z| \cdot\left|e^{-(u(z)}\right| \cdot\left|e^{-i v(z))}\right| \\
& =|z| \cdot\left|e^{-\log z}\right| \\
& =1
\end{aligned}
$$

Thus $|f(z)|<1$ on U by the maximum principle. Thus $f: U \longrightarrow \Delta$ is holomorphic. $f(z)$ has only one zero, at zero.

Suppose that $b \in \Delta$. Pick $r>|b|$ and consider applying the argument principle to

$$
f(z)-b
$$

on the circle of radius r centred at 0 we see that $f(z)$ is bijective. Thus $f(z)$ is biholomorphic.

