26. RIEMNANN MAPPING THEOREM: II

We end the course with an indication of how to prove the Riemann mapping theorem. In fact we sketch two approaches.

We begin with a basic fact that is used in both approaches:

Theorem 26.1. Every harmonic function u on a simply connected region U has a harmonic conjugate v on U.

The proof of (26.1) is not particularly hard. Recall that we constructed harmonic conjugates in Lecture 14 on rectangles and open disks by explicitly solving the Cauchy-Riemann equations. This involved integration over a carefully selected path. For a simply connected region U we start with a point $b \in U$ and we pick any path to a general point z. The fact that U is simply connected implies that the choice of path does not matter.

The first approach is relatively elementary, apart from one step. Let U be a simply connected region, not the whole complex plane. Pick a point $a \in U$. Let \mathcal{F} be the set of all injective (or one to one) holomorphic functions from U to Δ that send a to 0 such that f'(a) > 0:

 $\mathcal{F} = \{ f : U \longrightarrow \Delta \mid f \text{ is holomorphic, injective, } f(a) = 0 \text{ and } f'(a) > 0. \}$

Note that we are looking for an element f of \mathcal{F} that is also surjective (or onto). The basic idea is that if we are given an element g of \mathcal{F} that is not surjective then we can improve g by increasing its image. Thus we are looking for one of the best elements of \mathcal{F} . The goal is to make this idea precise.

The first step is to show that \mathcal{F} is non-empty, that is, to construct an element of \mathcal{F} .

Lemma 26.2. Let U be a simply connected region and suppose that $c \notin U$.

Then we can choose a holomorphic branch $h(z) = \sqrt{z-c}$ of the square root. h(z) is injective, the map $h: U \longrightarrow h(U)$ is biholomorphic and h(U) and -h(U) are disjoint.

Proof. Consider the function

$$u(z) = \ln(z - c).$$

u is a harmonic function on U. (26.1) implies that u has a harmonic conjugate v. The function

$$g(z) = u(z) + iv(z) = \log(z - c)$$

defines a holomorphic branch of the logarithm. The function

$$h(z) = e^{g(z)/2}$$

is then a holomorphic branch of $\sqrt{z-c}$.

Suppose that $h(z_1) = h(z_2)$. Squaring both sides we get

$$z_1 - c = h^2(z_1)$$

= $h^2(z_2)$
= $z_2 - c$.

Adding a to both sides we get $z_1 = z_2$. Thus h(z) is injective. It is clear that the derivative of h is nowhere zero. Thus $h: U \longrightarrow h(U)$ is biholomorphic.

Now suppose that

$$h(z_1) = -h(z_2)$$

is a common point of h(U) and -h(U). Squaring both sides we get

$$z_1 - c = h^2(z_1)$$
$$= h^2(z_2)$$
$$= z_2 - c.$$

Adding c to both sides we get $z_1 = z_2$. This is clearly nonsense and so h(U) and -h(U) are disjoint.

Lemma 26.3. \mathcal{F} is non-empty.

Proof. Suppose that the closed disk of radius ρ centred about d is contained in h(U).

Then every point of -h(U) is further than distance ρ from d:

$$|d+h(z)| > \rho$$
 for all $z \in U$.

It follows that

$$\frac{\rho}{|d+h(z)|} < 1 \qquad \text{for all} \qquad z \in U.$$

But then the holomorphic map

$$z \longrightarrow \frac{\rho}{h(z) + d}$$

sends U into Δ .

Suppose that f(a) = b. Consider the map

$$z \longrightarrow \frac{z-b}{1-\bar{b}z}$$

This is a biholomorphic map of the unit disk that sends b to 0. The composition with the map above sends a to 0. Finally, if the argument of the derivative at a is θ then the rotation

$$z \longrightarrow_{2} e^{-i\theta} z$$

rotates the derivative back to a positive real. Thus \mathcal{F} is non-empty. \Box

Now we show that if $f \in \mathcal{F}$ and f is not surjective onto Δ then we can do better:

Lemma 26.4. Let $V \subset \Delta$ be a simply connected region that contains 0.

If $V \neq \Delta$ then there is a biholomorphic map

$$\psi\colon V \longrightarrow W$$

where $W \subset \Delta$, $\psi(0) = 0$ and $\psi'(0) > 1$.

Proof. Pick $b \notin V$. Let

$$g: \Delta \longrightarrow \Delta$$

be the biholomorphic map

$$g(z) = \frac{z-b}{1-\bar{b}z}.$$

This sends b to 0 so that the image g(V) is a simply connected region that does not contain 0. (26.2) implies that we can define a holomorphic branch of the square root function on g(V), $h(z) = \sqrt{z}$. Finally let

$$f: \Delta \longrightarrow \Delta$$

be the biholomorphic map

$$f(z) = \frac{z - h(-b)}{1 - \overline{h(-b)}z}.$$

Then f sends $h(-b) = (h \circ g)(0)$ to 0. Thus the composition is a biholomorphic map of

$$\psi = f \circ h \circ g \colon V \longrightarrow W$$

such that $\psi(0) = 0$. Possibly applying a rotation we may assume that $\psi'(0) > 0$.

We have

$$g'(0) = 1 - |b|^2$$

and

$$f'(h(-b)) = \frac{1}{1 - |h(-b)|^2}.$$

Now

$$h^2(z) = z.$$

Thus

$$h'(z) = \frac{1}{2h(z)}$$
 and so $h'(-b) = \frac{1}{2h(-b)}$.

If
$$r = |-b|$$
 then $|h(-b)| = r^{1/2}$. It follows that
 $|\psi'(0)| = |f'(h(-b))| \cdot |h'(-b)| \cdot |g'(0)|$
 $= \frac{1 - |b|^2}{2|h(-b)| \cdot (1 - |h(-b)|^2)}$
 $= \frac{1 - r^2}{2r^{1/2} \cdot (1 - r)}$
 $= \frac{1 + r}{2r^{1/2}}$
 $= \frac{r^{-1/2} + r^{1/2}}{2}$
 ≥ 1 .

Note that the last inequality is an easy result from one variable calculus

$$x + \frac{1}{x} > 2$$
 for $x \in (0, 1)$.

The best element of \mathcal{F} is the function with the biggest derivative at 0. It is non-trivial result that \mathcal{F} contains such an element:

Theorem 26.5. There is an element $f \in \mathcal{F}$ such that if $g \in \mathcal{F}$ then $f'(0) \ge g'(0)$.

We now give a proof of the Riemann mapping theorem:

Proof of 24.1. Pick $f \in \mathcal{F}$ with the largest derivative at 0. Suppose that f is not surjective. Pick $b \notin V = f(U)$. Then (26.4) implies we can find an injective holomorphic function

 $\psi\colon V \longrightarrow \Delta$

such that $\psi'(0) > 1$. The composition $g = \psi \circ f$ is holomorphic, injective, g(a) = 0 and g'(a) > 0. Thus $g \in \mathcal{F}$. But

$$g'(a) = \psi'(0) \cdot f'(a)$$

> $f'(a),$

which is not possible, by our choice of f. Thus f must be surjective so that f is biholomorphic.

The second proof of the Riemann mapping theorem relies on the fact that we can solve Dirichlet's problem for U. As in the first proof, we may assume that U is bounded. There is no harm in assuming that $0 \in U$. Consider the continuous function $\ln |z|$ on the boundary. As we are assuming that we can solve Dirichlet's problem on U there is a harmonic function u on U extends to a continuous function on the boundary where it is $\ln |z|$. As U is simply connected it has a harmonic conjugate v(z).

Consider

$$f(z) = ze^{-(u(z)+iv(z))}.$$

Then f(z) is a holomorphic function and on the boundary we have

$$|f(z)| = |ze^{-(u(z)+iv(z))}|$$

= |z| \cdot |e^{-(u(z)}| \cdot |e^{-iv(z))}|
= |z| \cdot |e^{-\log z}|
= 1.

Thus |f(z)| < 1 on U by the maximum principle. Thus $f: U \longrightarrow \Delta$ is holomorphic. f(z) has only one zero, at zero.

Suppose that $b \in \Delta$. Pick r > |b| and consider applying the argument principle to

$$f(z) - b$$

on the circle of radius r centred at 0 we see that f(z) is bijective. Thus f(z) is biholomorphic.