
4. Conditional convergence

Example 4.1. Calculate ∫ ∞
−∞

x sin(2x)

x2 + 3
dx.

It is not immediately clear that the integral above converges. Sup-
pose we ignored the sine term to get∫ ∞

−∞

x

x2 + 3
dx.

This integral diverges. The integrand is

x

x2 + 3

which when x gets large looks like 1/x. But∫ ∞
1

dx

x
= lim

u→∞

∫ u

1

dx

x

= lim
u→∞

[
lnx

]u
1

= lim
u→∞

(lnu− ln 1)

=∞,

so that the integral diverges.
It also not hard to see that the integral in (4.1) diverges if we replace

sinx by its absolute value.
However, the integral in (4.1) might converge, since the positive and

negative bits might cancel to give a finite area. This is very similar to
the fact that the harmonic series diverges but the alternating harmonic
series converges.

Definition 4.2. Let f(x) be a continuous complex valued function on
the real line,

f : R −→ C.
Suppose that the improper integral∫ ∞

−∞
f(x) dx

converges. We say that this improper integral is absolutely conver-
gent if ∫ ∞

−∞
|f(x)| dx
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converges. Otherwise we say that the improper integral is condition-
ally convergent.

The integral in (4.1) is not absolutely convergent and we hope that
it is conditionally convergent.

To show that the integral in (4.1) converges the trick is to pretend as
though we know it does converge, compute the integral using contour
integration and use the computation to justify convergence.

It is convenient to introduce:

Definition 4.3. Let f(x) be a continuous complex valued function on
the real line

f : R −→ C.
The Cauchy principal value is the limit (assuming it exists):

lim
R→∞

∫ R

−R
f(x) dx.

Note that this limit arises when we use the standard contour, we let
R go infinity and we consider what happens along γ1.

Observe two things. First if the improper integral∫ ∞
−∞

f(x) dx

converges, then the Cauchy principal value exists and it is equal to the
improper integral.

On the other hand, the improper integral might not exist and yet
the Cauchy principal value does exist.

Example 4.4. Consider the function x −→ x.

First of all the improper integral∫ ∞
−∞

x dx

diverges. Indeed, by definition∫ ∞
−∞

x dx = lim
u→∞,l→−∞

∫ u

l

x dx

= lim
u→∞,l→−∞

[
x2

2

]u
l

= lim
u→∞,l→−∞

(
u2

2
− l2

2

)
.

This limit diverges. For example, if we first let u go∞ then the integral
goes to∞. If instead we first let l go∞ then the integral goes to −∞.
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In fact if we coordinate how l and u approach ∞ then we can arrange
for any limit we please. Compare this with a conditionally convergent
series. If we are allowed to rearrange the terms then we can get any
limit we please.

On the other hand, it is easy to see that the Cauchy principal value
is zero:

lim
R→∞

∫ R

−R
x dx = lim

R→∞

[
x2

2

]R
−R

= lim
R→∞

R2

2
− R2

2
= lim

R→∞
0

= 0.

Let us go back to computing

∫ ∞
−∞

x sin(2x)

x2 + 3
dx.

We integrate over the standard contour γ = γ1 + γ2. As in Lecture
3, we change the integrand slightly

f(z) =
ze2iz

z2 + 3
.

f(z) has isolated singularities at ±
√

3i. Only
√

3i belongs to the
upper half plane. If R >

√
3 we capture this singularity. As this is a

simple pole the residue is

Res√3i f(z) = lim
z→
√
3i

(z −
√

3i)ze2iz

z2 + 3

= lim
z→
√
3i

ze2iz

z +
√

3i

=

√
3ie−2

√
3

2
√

3i

=
e−2
√
3

2
.
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The residue theorem implies that∫
γ

ze2iz

z2 + 3
dz = 2πiRes√3i f(z)

= 2πi
e−2
√
3

2

= πie−2
√
3.

We now attack the integral over γ2, the semicircle of radius R in the
upper half plane centred at 0. The problem is that it is not clear that
this goes to zero as R goes to infinity. The length of γ2 is πR and for
the maximum value M of |f(z)| we have

|f(z)| ≤
∣∣∣∣ ze2izz2 + 3

∣∣∣∣
=
|ze2iz|
|z2 + 3|

≤ R

R2 − 3
.

If we apply the usual estimate we just get∣∣∣∣∫
γ2

ze2iz

z2 + 3
dz

∣∣∣∣ ≤ LM

≤ πR2

R2 − 1
,

which doesn’t go to zero. It only goes to zero because of the e2iz term
and so using the LM -estimate just doesn’t work.

Instead we use

Lemma 4.5 (Jordan’s Lemma).∫
γ2

|eiz||dz| < π,

where γ2 is any semicircle in the upper half plane centred at the origin
and |dz| = ds represents the arclength parameter.

We defer the proof of Jordan’s Lemma (which isn’t hard) and show
how to use it for our purposes. We will need a slight improvement of
the LM -estimate:
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Lemma 4.6. If γ is a piecewise differentiable curve and h(z) is a
continuous complex valued function on γ then∣∣∣∣∫

γ

h(z) dz

∣∣∣∣ ≤ ∫
γ

|h(z)||dz|.

Proof. This follows by realising the integral as a Riemann sum and
applying the triangle inequality to the Riemann sum. �

We have ∣∣∣∣∫
γ2

ze2iz

z2 + 3
dz

∣∣∣∣ ≤ ∫
γ2

|ze2iz|
|z2 + 3|

|dz|

≤
∫
γ2

|Re2iz|
|R2 − 3|

|dz|

=
R

R2 − 3

∫
γ2

|e2iz||dz|

<
πR

R2 − 3
,

which goes to zero, as R goes to infinity.
We have ∫ R

−R

xe2ix

x2 + 3
dx+

∫
γ2

ze2iz

z2 + 3
dz = πie−2

√
3.

If we let R go to infinity then the RHS is constant and the second term
on the LHS goes to zero. It follows that the limit as R goes to infinity
of the first term exists, that is, the Cauchy principal value exists:

lim
R→∞

∫ R

−R

xe2ix

x2 + 3
dx = πie−2

√
3.

Taking the imaginary part of both sides we get

lim
R→∞

∫ R

−R

x sin(2x)

x2 + 3
dx = πe−2

√
3.

But the integrand
x sin(2x)

x2 + 3
is even. In this case the existence of the Cauchy principal value shows
that the improper integral converges.

Lemma 4.7. Let f(x) be a continuous complex valued function on the
real line,

f : R −→ C.
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If f(x) is even, that is, f(x) = f(−x) then the Cauchy principal value

lim
R→∞

∫ R

−R
f(x) dx

exists if and only if the improper integral∫ ∞
−∞

f(x) dx

converges, and in this case the two are the same:

lim
R→∞

∫ R

−R
f(x) dx =

∫ ∞
−∞

f(x) dx.

Proof. If the improper integral exists then certainly the Cauchy prin-
cipal value exists.

Now suppose that the Cauchy principal value exists. As f(x) is even∫ ∞
−∞

f(x) dx = 2

∫ ∞
0

f(x) dx.

On the other hand the Cauchy principal value is

lim
R→∞

∫ R

−R
f(x) dx = lim

R→∞

(∫ 0

−R
f(x) dx+

∫ R

0

f(x) dx

)
= lim

R→∞
2

∫ R

0

f(x) dx

= 2

∫ ∞
0

f(x) dx. �

Putting all of this together shows that∫ ∞
−∞

x sin(2x)

x2 + 3
dx = πe−2

√
3.

We now turn to a proof of Jordan’s Lemma:

Proof of (4.5). We just use the standard parametrisation

γ2(θ) = Reiθ where θ ∈ [0, π].

In this case

|dz| = Rdθ.
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On the other hand,

|eiz| = |eiReiθ |
= |eiR(cos θ+i sin θ)|
= |eiR cos θ−R sin θ|
= |eiR cos θ||e−R sin θ|
= e−R sin θ.

So we are reduced to showing that∫ π

0

e−R sin θ dθ <
π

R
.

Consider the behaviour of sin θ over the interval [0, π]. First of all we
just need to worry about what happens over the interval [0, π/2] by
symmetry. Note that the graph of sin θ over the interval [0, π/2] never
goes below the line connecting the endpoints, (0, 0) and (π/2, 1). It
follows that

sin θ ≥ 2θ

π
for any θ ∈ [0, π/2].

It follows that ∫ π

0

e−R sin θ dθ = 2

∫ π/2

0

e−R sin θ dθ

≤ 2

∫ π/2

0

e−2Rθ/π dθ

=
π

R

∫ R

0

e−t dt

<
π

R

∫ ∞
0

e−t dt

=
π

R
. �
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