6. Indented Paths

Example 6.1. Calculate

$$
\int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x
$$

This integral is called Dirichlet's integral.
We first observe that this integral is not absolutely convergent. Actually

$$
\int_{1}^{\infty} \frac{\mathrm{d} x}{x}
$$

diverges but so in fact does

$$
\int_{0}^{1} \frac{\mathrm{~d} x}{x}
$$

Indeed,

$$
\begin{aligned}
\int_{1}^{\infty} \frac{\mathrm{d} x}{x} & =\lim _{u \rightarrow \infty} \int_{1}^{u} \frac{\mathrm{~d} x}{x} \\
& =\lim _{u \rightarrow \infty}[\ln x]_{1}^{u} \\
& =\lim _{u \rightarrow \infty} \ln u-\ln 1 \\
& =\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{1} \frac{\mathrm{~d} x}{x} & =\lim _{l \rightarrow 0} \int_{l}^{1} \frac{\mathrm{~d} x}{x} \\
& =\lim _{l \rightarrow 0}[\ln x]_{l}^{1} \\
& =\lim _{l \rightarrow 0} \ln 1-\ln l \\
& =-\infty
\end{aligned}
$$

We will need to use the Cauchy principal value both at infinity and at 0 :

Definition 6.2. Let $f(x)$ be a complex valued function on a finite interval

$$
f:(b, c) \longrightarrow \mathbb{C}
$$

We suppose that f is continuous except at $a \in(b, c)$.
The Cauchy principal value is the limit (assuming it exists):

$$
\lim _{\epsilon \rightarrow 0}\left(\int_{b}^{a-\epsilon} f(x) \mathrm{d} x+\int_{a+\epsilon}^{c} f(x) \mathrm{d} x\right) .
$$

Here ϵ is a positive number decreasing to 0 .

Example 6.3. Consider

$$
\int_{-1}^{1} \frac{\mathrm{~d} x}{x}
$$

The integrand is not continuous at 0 .
This improper integral diverges but the Cauchy principal value exists. Indeed for the improper integral we have

$$
\begin{aligned}
\int_{-1}^{1} \frac{\mathrm{~d} x}{x} & =\lim _{u \rightarrow 0, l \rightarrow 0} \int_{-1}^{u} \frac{\mathrm{~d} x}{x}+\int_{l}^{1} \frac{\mathrm{~d} x}{x} \\
& =\lim _{u \rightarrow 0, l \rightarrow 0} \ln u-\ln l
\end{aligned}
$$

If we let u to zero first then we get $-\infty$ but if we let l go to zero first we get ∞. In fact we can get any limit we please, if we coordinate l and u. On the other hand, the Cauchy principal value is

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0}\left(\int_{-1}^{-\epsilon} \frac{\mathrm{d} x}{x}+\int_{\epsilon}^{1} \frac{\mathrm{~d} x}{x}\right) & =\lim _{\epsilon \rightarrow 0} \ln -\epsilon-\ln \epsilon \\
& =\lim _{\epsilon \rightarrow 0} 0 \\
& =0
\end{aligned}
$$

Now let us go back to calculating the original integral. The function

$$
\frac{\sin z}{z}
$$

has an isolated singularity at the origin and the singularity there is removable. It follows that the integrand

$$
\frac{\sin x}{x}
$$

extends to a function on the whole real line. This function is even and so we compute

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x} \mathrm{~d} x
$$

and divide by 2 .
Proceeding as usual we consider

$$
f(z)=\frac{e^{i z}}{z}
$$

It is tempting to integrate this over the standard contour. The problem is that $f(z)$ has an isolated singularity at 0 which is not removable, rather it is a simple pole.

Instead we integrate over a small perturbation of the standard path. We integrate from $-R$ to $-\rho$ along the real axis, γ_{-}; around a semicircle of radius ρ in the upper half plane from $-\rho$ to ρ, γ_{0}; from ρ to R along the real axis, γ_{+}; and then back along a semicircle of radius R, γ_{2}. As usual we let R go to infinity and we are going to let ρ go to zero.

The semicircle of radius ρ is the small indentation. Note that we traverse this semicircle clockwise, not anticlockwise. Let

$$
\gamma=\gamma_{-}+\gamma_{0}+\gamma_{+}+\gamma_{2}
$$

be the resulting closed contour.
Let U be the complement of the closed unit disc or radius ρ centred at the origin, inside the open unit disc of radius R centred at the origin in the upper half plane,

$$
U=\{z \in \mathbb{H}|\rho<|z|<R\}
$$

the intersection of an annulus with the upper half plane. Then the boundary of U is γ.

The only singularity of $f(z)$ is at the origin and this is neither a point of U nor a point of ∂U. Cauchy's theorem implies that

$$
\int_{\gamma} \frac{e^{i z}}{z} \mathrm{~d} z=0
$$

We now compute each part of the integral over γ separately. The integral over γ_{2} goes to zero, using Jordan's Lemma:

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{e^{i z}}{z} \mathrm{~d} z\right| & \leq \int_{\gamma_{2}} \frac{\left|e^{i z}\right|}{|z|}|\mathrm{d} z| \\
& =\int_{\gamma_{2}} \frac{\left|e^{i z}\right|}{R}|\mathrm{~d} z| \\
& =\frac{1}{R} \int_{\gamma_{2}}\left|e^{i z}\right||\mathrm{d} z| \\
& <\frac{\pi}{R}
\end{aligned}
$$

which goes to zero, as R goes to infinity.
As we let R go to infinity and ρ go to zero then the integral over γ_{-} and γ_{+}tends to the Cauchy principal value:

$$
\lim _{R \rightarrow \infty, \rho \rightarrow 0}\left(\int_{-R}^{-\rho} \frac{e^{i x}}{x} \mathrm{~d} x+\int_{\rho}^{R} \frac{e^{i x}}{x} \mathrm{~d} x\right)
$$

of the improper integral

$$
\int_{-\infty}^{\infty} \frac{e^{i x}}{x} \mathrm{~d} x
$$

It remains to understand what happens around the semicircle of radius ρ, as ρ goes to zero. Now if we went all the way around the circle of radius ρ then we could compute this using the Residue Theorem.

In fact the integral around the semicircle approaches half of this, as ρ goes to zero:
Lemma 6.4. Suppose that $f(z)$ has a simple pole at $a \in \mathbb{R}$ and γ_{ρ} is the semicircle of radius ρ centred at a in the upper half plane, traversed anticlockwise.

Then

$$
\lim _{\rho \rightarrow 0} \int_{\gamma_{\rho}} f(z) \mathrm{d} z=\pi i \operatorname{Res}_{a} f(z)
$$

We defer the proof of (6.4) to the end and first show how to use it to finish the computation. We compute the residue at 0 :

$$
\begin{aligned}
\operatorname{Res}_{0} \frac{e^{i z}}{z} & =\lim _{z \rightarrow 0} e^{i z} \\
& =1
\end{aligned}
$$

(6.4) implies that

$$
\lim _{\rho \rightarrow 0} \int_{\gamma_{0}} \frac{e^{i z}}{z} \mathrm{~d} z=-\pi i
$$

Note the minus sign, since we traverse γ_{0} clockwise.
Putting all of this together we see that the Cauchy principal value of

$$
\int_{-\infty}^{\infty} \frac{e^{i x}}{x} \mathrm{~d} x
$$

is πi. Taking the imaginary part, it follows that the Cauchy principal value of

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x} \mathrm{~d} x
$$

is π. Using the fact that $\sin x / x$ is even, it follows that the Cauchy principal value of

$$
\int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x
$$

is $\pi / 2$. But this obviously agrees with the value of the improper integral

$$
\int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x=\frac{\pi}{2}
$$

Proof. By assumption $f(z)$ has a Laurent expansion centred at a in a punctured neighbourhood of a, so that we may write

$$
f(z)=\frac{a_{-1}}{z-a}+g(z)
$$

where $g(z)$ is holomorphic at a.
If we parametrise γ_{ρ} in the obvious way,

$$
\gamma_{\rho}(\theta)=\rho e^{i \theta}+a \quad \text { where } \quad \theta \in[0, \pi]
$$

then

$$
\mathrm{d} z=-\rho e^{i \theta} \mathrm{~d} \theta
$$

and so we get

$$
\begin{aligned}
\int_{\gamma_{\rho}} f(z) \mathrm{d} z & =\int_{0}^{\pi} i a_{-1} \mathrm{~d} \theta+\int_{\gamma_{\rho}} g(z) \mathrm{d} z \\
& =\pi i a_{-1}+\int_{\gamma_{\rho}} g(z) \mathrm{d} z \\
& =\pi i \operatorname{Res}_{a} f(z)+\int_{\gamma_{\rho}} g(z) \mathrm{d} z .
\end{aligned}
$$

As $g(z)$ is holomorphic at a it is certainly continuous at a and so it is certainly bounded near a,

$$
|g(z)| \leq M
$$

for some M. The semicircle of radius ρ has length $\pi \rho$ and so

$$
\begin{aligned}
\left|\int_{\gamma_{\rho}} g(z) \mathrm{d} z\right| & \leq L M \\
& =\pi \rho M
\end{aligned}
$$

which goes to zero, as ρ goes to zero.
Note that it isn't really important that a is a real number and there are similar results if one goes around the arc of any circle, we just pick up the corresponding proportion of the residue.

