
6. Indented Paths

Example 6.1. Calculate ∫ ∞
0

sinx

x
dx.

This integral is called Dirichlet’s integral.
We first observe that this integral is not absolutely convergent. Ac-

tually ∫ ∞
1

dx

x
diverges but so in fact does ∫ 1

0

dx

x
.

Indeed, ∫ ∞
1

dx

x
= lim

u→∞

∫ u

1

dx

x

= lim
u→∞

[
lnx

]u
1

= lim
u→∞

lnu− ln 1

=∞,
and ∫ 1

0

dx

x
= lim

l→0

∫ 1

l

dx

x

= lim
l→0

[
lnx

]1
l

= lim
l→0

ln 1− ln l

= −∞.
We will need to use the Cauchy principal value both at infinity and

at 0:

Definition 6.2. Let f(x) be a complex valued function on a finite in-
terval

f : (b, c) −→ C.
We suppose that f is continuous except at a ∈ (b, c).

The Cauchy principal value is the limit (assuming it exists):

lim
ε→0

(∫ a−ε

b

f(x) dx+

∫ c

a+ε

f(x) dx

)
.
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Here ε is a positive number decreasing to 0.

Example 6.3. Consider ∫ 1

−1

dx

x
.

The integrand is not continuous at 0.
This improper integral diverges but the Cauchy principal value ex-

ists. Indeed for the improper integral we have∫ 1

−1

dx

x
= lim

u→0,l→0

∫ u

−1

dx

x
+

∫ 1

l

dx

x

= lim
u→0,l→0

lnu− ln l.

If we let u to zero first then we get −∞ but if we let l go to zero first
we get ∞. In fact we can get any limit we please, if we coordinate l
and u. On the other hand, the Cauchy principal value is

lim
ε→0

(∫ −ε
−1

dx

x
+

∫ 1

ε

dx

x

)
= lim

ε→0
ln−ε− ln ε

= lim
ε→0

0

= 0.

Now let us go back to calculating the original integral. The function

sin z

z
,

has an isolated singularity at the origin and the singularity there is
removable. It follows that the integrand

sinx

x

extends to a function on the whole real line. This function is even and
so we compute ∫ ∞

−∞

sinx

x
dx

and divide by 2.
Proceeding as usual we consider

f(z) =
eiz

z
.

It is tempting to integrate this over the standard contour. The problem
is that f(z) has an isolated singularity at 0 which is not removable,
rather it is a simple pole.
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Instead we integrate over a small perturbation of the standard path.
We integrate from−R to−ρ along the real axis, γ−; around a semicircle
of radius ρ in the upper half plane from −ρ to ρ, γ0; from ρ to R along
the real axis, γ+; and then back along a semicircle of radius R, γ2. As
usual we let R go to infinity and we are going to let ρ go to zero.

The semicircle of radius ρ is the small indentation. Note that we
traverse this semicircle clockwise, not anticlockwise. Let

γ = γ− + γ0 + γ+ + γ2

be the resulting closed contour.
Let U be the complement of the closed unit disc or radius ρ centred

at the origin, inside the open unit disc of radius R centred at the origin
in the upper half plane,

U = { z ∈ H | ρ < |z| < R },
the intersection of an annulus with the upper half plane. Then the
boundary of U is γ.

The only singularity of f(z) is at the origin and this is neither a
point of U nor a point of ∂U . Cauchy’s theorem implies that∫

γ

eiz

z
dz = 0.

We now compute each part of the integral over γ separately. The
integral over γ2 goes to zero, using Jordan’s Lemma:∣∣∣∣∫

γ2

eiz

z
dz

∣∣∣∣ ≤ ∫
γ2

|eiz|
|z|
|dz|

=

∫
γ2

|eiz|
R
|dz|

=
1

R

∫
γ2

|eiz||dz|

<
π

R
,

which goes to zero, as R goes to infinity.
As we let R go to infinity and ρ go to zero then the integral over γ−

and γ+ tends to the Cauchy principal value:

lim
R→∞,ρ→0

(∫ −ρ
−R

eix

x
dx+

∫ R

ρ

eix

x
dx

)
of the improper integral ∫ ∞

−∞

eix

x
dx.
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It remains to understand what happens around the semicircle of
radius ρ, as ρ goes to zero. Now if we went all the way around the circle
of radius ρ then we could compute this using the Residue Theorem.

In fact the integral around the semicircle approaches half of this, as
ρ goes to zero:

Lemma 6.4. Suppose that f(z) has a simple pole at a ∈ R and γρ is
the semicircle of radius ρ centred at a in the upper half plane, traversed
anticlockwise.

Then

lim
ρ→0

∫
γρ

f(z) dz = πiResa f(z).

We defer the proof of (6.4) to the end and first show how to use it
to finish the computation. We compute the residue at 0:

Res0
eiz

z
= lim

z→0
eiz

= 1.

(6.4) implies that

lim
ρ→0

∫
γ0

eiz

z
dz = −πi.

Note the minus sign, since we traverse γ0 clockwise.
Putting all of this together we see that the Cauchy principal value

of ∫ ∞
−∞

eix

x
dx

is πi. Taking the imaginary part, it follows that the Cauchy principal
value of ∫ ∞

−∞

sinx

x
dx

is π. Using the fact that sinx/x is even, it follows that the Cauchy
principal value of ∫ ∞

0

sinx

x
dx

is π/2. But this obviously agrees with the value of the improper integral∫ ∞
0

sinx

x
dx =

π

2
.

Proof. By assumption f(z) has a Laurent expansion centred at a in a
punctured neighbourhood of a, so that we may write

f(z) =
a−1
z − a

+ g(z),
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where g(z) is holomorphic at a.
If we parametrise γρ in the obvious way,

γρ(θ) = ρeiθ + a where θ ∈ [0, π]

then
dz = −ρeiθ dθ

and so we get ∫
γρ

f(z) dz =

∫ π

0

ia−1 dθ +

∫
γρ

g(z) dz

= πia−1 +

∫
γρ

g(z) dz

= πiResa f(z) +

∫
γρ

g(z) dz.

As g(z) is holomorphic at a it is certainly continuous at a and so it
is certainly bounded near a,

|g(z)| ≤M,

for some M . The semicircle of radius ρ has length πρ and so∣∣∣∣∣
∫
γρ

g(z) dz

∣∣∣∣∣ ≤ LM

= πρM,

which goes to zero, as ρ goes to zero. �

Note that it isn’t really important that a is a real number and there
are similar results if one goes around the arc of any circle, we just pick
up the corresponding proportion of the residue.
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