7. Branch points

Example 7.1. Calculate

$$
I=\int_{0}^{\infty} \frac{x^{a}}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x \quad \text { where } \quad a \in(-1,3) .
$$

To solve this problem using contour integration we introduce

$$
f(z)=\frac{z^{a}}{\left(z^{2}+1\right)^{2}} .
$$

This immediately introduces a problem, that wasn't present for the improper integral. Namely z^{a} is not well-defined. For example, if we take $a=1 / 2$ we are taking square roots.

To consistently choose a square root we need to cut the plane open along a straight line. Which straight line? The usual choice is the negative real axis.

Presumably we are going to integrate along the standard contour, so the negative real axis is a bad choice of branch cut, since a half (or better $1 /(2+\pi)$) of the contour is along the negative real axis (actually we can make this work but this requires looking at quite a different contour). We don't want the branch cut in the upper half plane, so the best choice is to cut along the negative imaginary axis:

$$
V=\mathbb{C} \backslash\{i y \mid y \leq 0\}
$$

The best way to take roots is to use logarithms. So we are going to make a choice of $\log z$ with a cut along the negative imaginary axis:

$$
\log z=\ln |z|+i \arg z \quad \text { where } \quad \arg z \in(-\pi / 2,3 \pi / 2)
$$

This makes $\log z$ a holomorphic function on V. From here, it is easy to define

$$
z^{a}=e^{a \log z} .
$$

This makes z^{a} a holomorphic function on V.
But now the problem is that we have to exclude 0 from the contour, since 0 is part of the cut. So we use the same indented path as in lecture 6 , which has four pieces:

$$
\gamma=\gamma_{-}+\gamma_{0}+\gamma_{+}+\gamma_{2}
$$

The function $f(z)$ has isolated singularities at i which belongs to the upper half plane. It doesn't have a singularity at $-i$ since $f(z)$ is not defined along the whole negative imaginary axis. We suppose that $R>1$ but $\rho<1$, so that we capture i.

We compute the residue at i. This is a double pole:

$$
\begin{aligned}
\operatorname{Res}_{i} f(z) & =\lim _{z \rightarrow i} \frac{\mathrm{~d}}{\mathrm{~d} z}\left(\frac{(z-i)^{2} z^{a}}{\left(z^{2}+1\right)^{2}}\right) \\
& =\lim _{z \rightarrow i} \frac{\mathrm{~d}}{\mathrm{~d} z}\left(\frac{z^{a}}{(z+i)^{2}}\right) \\
& =\lim _{z \rightarrow i} \frac{a z^{a-1}(z+i)^{2}-2 z^{a}(z+i)}{(z+i)^{4}} \\
& =\lim _{z \rightarrow i} \frac{a z^{a-1}(z+i)-2 z^{a}}{(z+i)^{3}} \\
& =\frac{a i^{a-1} 2 i-2 i^{a}}{(2 i)^{3}} \\
& =\frac{(a-1) i^{a}}{-4 i} \\
& =\frac{a-1}{4} i e^{a \pi i / 2} .
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{\gamma} \frac{z^{a}}{\left(z^{2}+1\right)^{2}} \mathrm{~d} z & =2 \pi i \operatorname{Res}_{i} f(z) \\
& =\frac{1-a}{2} \pi e^{a \pi i / 2}
\end{aligned}
$$

We estimate the integral over γ_{2}. We estimate the maximum value M of $|f(z)|$ over γ_{2} :

$$
\begin{aligned}
|f(z)| & =\left|\frac{z^{a}}{\left(z^{2}+1\right)^{2}}\right| \\
& =\frac{\left|z^{a}\right|}{\left|\left(z^{2}+1\right)^{2}\right|} \\
& \leq \frac{R^{a}}{\left(R^{2}-1\right)^{2}} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{z^{a}}{\left(z^{2}+1\right)^{2}} \mathrm{~d} z\right| & \leq L M \\
& \leq \frac{\pi R^{a+1}}{\left(R^{2}-1\right)^{2}}
\end{aligned}
$$

which goes to zero as R goes to infinity, since $a+1<4$.

Now we compute what happens over γ_{0} as ρ goes to zero. We estimate the maximum value M of $|f(z)|$ over γ_{0} :

$$
\begin{aligned}
|f(z)| & =\left|\frac{z^{a}}{\left(z^{2}+1\right)^{2}}\right| \\
& =\frac{\left|z^{a}\right|}{\left|\left(z^{2}+1\right)^{2}\right|} \\
& \leq \frac{\rho^{a}}{\left(1-\rho^{2}\right)^{2}} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\int_{\gamma_{0}} \frac{z^{a}}{\left(z^{2}+1\right)^{2}} \mathrm{~d} z\right| & \leq L M \\
& \leq \frac{\pi \rho^{a+1}}{\left(1-\rho^{2}\right)^{2}}
\end{aligned}
$$

which goes to zero as ρ goes to zero, since $a+1>0$. Note that the denominator approaches 1 , so that it plays no role.

The integral over γ_{+}is equal to

$$
\int_{\gamma_{+}} \frac{z^{a}}{\left(z^{2}+1\right)^{2}} \mathrm{~d} z=\int_{\rho}^{R} \frac{x^{a}}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x
$$

which goes to the value of the improper integral I we are trying to compute, as ρ goes to zero and R to infinity.

Finally, for the integral over γ_{-}we use the parametrisation

$$
z=-x \quad \text { where } \quad x \in[\rho, R] .
$$

This traverses γ_{-}in the wrong direction, so we flip the sign.

$$
\int_{\gamma_{-}} \frac{z^{a}}{\left(z^{2}+1\right)^{2}} \mathrm{~d} z=e^{a \pi i} \int_{\rho}^{R} \frac{x^{a}}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x
$$

Note that exponential is simply $(-1)^{a}$.
Letting ρ go to zero and R go to infinity we get:

$$
\left(1+e^{a \pi i}\right) I=\frac{1-a}{2} \pi e^{a \pi i / 2}
$$

Solving for I gives

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x^{a}}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x & =I \\
& =\frac{1-a}{2} \pi \frac{e^{a \pi i / 2}}{1+e^{a \pi i}} \\
& =\frac{1-a}{4} \pi \frac{2}{e^{-a \pi i / 2}+e^{a \pi i / 2}} \\
& =\frac{\pi(1-a)}{4 \cos a \pi / 2}
\end{aligned}
$$

