8. The keyhole contour

Example 8.1. Calculate

$$
I=\int_{0}^{\infty} \frac{x^{a}}{(x+1)^{2}} \mathrm{~d} x \quad \text { where } \quad a \in(-1,1)
$$

Clearly this example is very similar to the one in lecture 7 . We proceed as before, we introduce

$$
f(z)=\frac{z^{a}}{(z+1)^{2}}
$$

However now we choose to make a branch cut along the positive real line.

$$
V=\mathbb{C} \backslash\{x \mid x \geq 0\}
$$

We are going to make a choice of $\log z$ with a cut along the positive real axis:

$$
\log z=\ln |z|+i \arg z \quad \text { where } \quad \arg z \in(0,2 \pi)
$$

This makes $\log z$ a holomorphic function on V. From here, it is easy to define

$$
z^{a}=e^{a \log z}
$$

This makes z^{a} a holomorphic function on V.
We are going to make an usual choice of contour. The contour will have four parts:

$$
\gamma=\gamma_{+}+\gamma_{0}+\gamma_{R}+\gamma_{-}
$$

But now the problem is that we have to exclude 0 from the contour, since 0 is part of the cut. So we use the same indented path as in lecture 6 , which has four pieces:

$$
\gamma=\gamma_{-}+\gamma_{0}+\gamma_{+}+\gamma_{2}
$$

γ_{+}goes from ρ to R and γ_{2} goes from R to R all the way around a circle of radius R. γ_{-}goes from R back to ρ and γ_{0} goes all the way around a circle of radius ρ, clockwise.

Strictly speaking the paths $\gamma_{ \pm}$make no sense. For a start one is the reverse of the other and secondly both are along the cut, where $f(z)$ is even defined. However we imagine that γ_{+}is really above the cut and γ_{-}is really below the cut. This gives a different value to z^{a} on γ_{+}and γ_{-}.

The function $f(z)$ has an isolated singularity at -1 which belongs inside the contour, as long as $R>1$ and $\rho<1$. We compute the
residue at -1 . This is a double pole:

$$
\begin{aligned}
\operatorname{Res}_{-1} f(z) & =\lim _{z \rightarrow-1} \frac{\mathrm{~d}}{\mathrm{~d} z}\left(z^{a}\right) \\
& =\lim _{z \rightarrow-1} a z^{a-1} \\
& =a(-1)^{a-1} \\
& =-a\left(e^{i \pi}\right)^{a} \\
& =-a e^{a i \pi}
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{\gamma} \frac{z^{a}}{(z+1)^{2}} \mathrm{~d} z & =2 \pi i \operatorname{Res}_{1} f(z) \\
& =-2 \pi i a e^{a i \pi}
\end{aligned}
$$

We estimate the integral over γ_{2}. We estimate the maximum value M of $|f(z)|$ over γ_{2} :

$$
\begin{aligned}
|f(z)| & =\left|\frac{z^{a}}{(z+1)^{2}}\right| \\
& =\frac{\left|z^{a}\right|}{\left|(z+1)^{2}\right|} \\
& \leq \frac{R^{a}}{(R-1)^{2}}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{z^{a}}{(z+1)^{2}} \mathrm{~d} z\right| & \leq L M \\
& \leq \frac{2 \pi R^{a+1}}{(R-1)^{2}}
\end{aligned}
$$

which goes to zero as R goes to infinity, since $a+1<2$.
Now we compute what happens over γ_{0} as ρ goes to zero. We estimate the maximum value M of $|f(z)|$ over γ_{0} :

$$
\begin{aligned}
|f(z)| & =\left|\frac{z^{a}}{(z+1)^{2}}\right| \\
& =\frac{\left|z^{a}\right|}{\left|(z+1)^{2}\right|} \\
& \leq \frac{\rho^{a}}{(1-\rho)^{2}} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\int_{\gamma_{0}} \frac{z^{a}}{(z+1)^{2}} \mathrm{~d} z\right| & \leq L M \\
& \leq \frac{2 \pi \rho^{a+1}}{(1-\rho)^{2}}
\end{aligned}
$$

which goes to zero as ρ goes to zero, since $a+1>0$.
The integral over γ_{+}is equal to

$$
\int_{\gamma_{+}} \frac{z^{a}}{\left(z^{2}+1\right)^{2}} \mathrm{~d} z=\int_{\rho}^{R} \frac{x^{a}}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x
$$

which goes to the value of the improper integral I we are trying to compute, as ρ goes to zero and R to infinity.

Finally, for the integral over γ_{-}we use the same parametrisation

$$
z=x \quad \text { where } \quad x \in[\rho, R]
$$

but a different branch of the logarithm

$$
z^{a}=x^{a} e^{2 \pi i a}
$$

This traverses γ_{-}in the wrong direction, so we flip the sign.

$$
\int_{\gamma_{-}-} \frac{z^{a}}{\left(z^{2}+1\right)^{2}} \mathrm{~d} z=-e^{2 a \pi i} \int_{\rho}^{R} \frac{x^{a}}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x .
$$

Letting ρ go to zero and R go to infinity we get:

$$
\left(1-e^{2 \pi i a}\right) I=-2 \pi i a e^{\pi i a} .
$$

Solving for I gives

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x^{a}}{(x+1)^{2}} \mathrm{~d} x & =I \\
& =-2 \pi i a \frac{e^{a \pi i}}{1-e^{2 a \pi i}} \\
& =\pi a \frac{-2 i}{e^{-a \pi i}-e^{a \pi i}} \\
& =\pi a \frac{2 i}{e^{a \pi i}-e^{-a \pi i}} \\
& =\frac{\pi a}{\sin \pi a} .
\end{aligned}
$$

