9. Inserting the logarithm

Example 9.1. Calculate

$$
I=\int_{0}^{\infty} \frac{\mathrm{d} x}{x^{3}+1}
$$

At first sight this integral seems straightforward, just integrate

$$
\frac{1}{z^{3}+1}
$$

over the standard contour. The problem is that if we do this then we get the value of

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{x^{3}+1}
$$

and there is no obvious way to go from the value of this integral to the value of the integral we are after, since $x^{3}+1$ is neither odd nor even.

We already saw one fix in a homework problem, integrate along an arc instead of a semicircle. If we go along the line from $e^{2 \pi i / 3} R$ to 0 then we can exploit the fact that

$$
\frac{1}{\left(e^{2 \pi i / 3} t\right)^{3}+1}=\frac{1}{t^{3}+1} .
$$

Here is another way to proceed which is more versatile. It looks as though using a keyhole contour in Lecture 8 might work, since we only integrate along the interval $[\rho, R]$. The problem with using the keyhole contour is that there is no ambiguity in the definition of

$$
\frac{1}{z^{3}+1}
$$

so that when we integrate over $\gamma_{-}+\gamma_{+}$the integrals cancel.
To engineer an integral that does not cancel we integrate

$$
f(z)=\frac{\log z}{z^{3}+1}
$$

instead. We use the same branch of the logarithm as in Lecture 8. We cut along the positive real axis:

$$
\log z=\ln |z|+i \arg z \quad \text { where } \quad \arg z \in(0,2 \pi)
$$

so that $\log z$ is holomorphic on

$$
V=\mathbb{C} \backslash\{x \mid x \geq 0\}
$$

$f(z)$ has isolated singularities at the cube roots of -1 ,

$$
e^{\pi i / 3}, \quad e^{3 \pi i / 3} \quad \text { and } \quad e^{5 \pi i / 3}
$$

These are all simple singularities. As they all have modulus one the logarithm is purely imaginary at these points. We compute the residues:

$$
\begin{aligned}
\operatorname{Res}_{e^{\pi i / 3}} f(z) & =\lim _{z \rightarrow e^{\pi i / 3}} \frac{\log z}{3 z^{2}} \\
& =\frac{\pi i / 3}{3 e^{2 \pi i / 3}} \\
& =\frac{\pi i e^{-2 \pi i / 3}}{9} .
\end{aligned}
$$

We also have

$$
\begin{aligned}
\operatorname{Res}_{e^{3 \pi i / 3}} f(z) & =\lim _{z \rightarrow e^{\pi i}} \frac{\log z}{3 z^{2}} \\
& =\frac{\pi i}{3 e^{2 \pi i}} \\
& =\frac{\pi i}{3}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Res}_{e^{5 \pi i / 3}} f(z) & =\lim _{z \rightarrow e^{5 \pi i / 3}} \frac{\log z}{3 z^{2}} \\
& =\frac{5 \pi i / 3}{3 e^{10 \pi i / 3}} \\
& =\frac{5 \pi i e^{-4 \pi i / 3}}{9}
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{\gamma} \frac{\log z}{z^{3}+1} \mathrm{~d} z & =2 \pi i\left(\operatorname{Res}_{e^{\pi i / 3}} f(z)+\operatorname{Res}_{e^{3 \pi i / 3}} f(z)+\operatorname{Res}_{e^{5 \pi i / 3}} f(z)\right) \\
& =2 \pi i \frac{\pi i}{9}\left(e^{-2 \pi i / 3}+3+5 e^{-4 \pi i / 3}\right) \\
& =2 \pi i \frac{\pi i}{9}\left(-\frac{1}{2}-\frac{\sqrt{3} i}{2}+3-\frac{5}{2}+\frac{5 \sqrt{3} i}{2}\right) \\
& =-2 \pi i \frac{2 \pi}{3 \sqrt{3}}
\end{aligned}
$$

Next we show the integrals over γ_{2} and γ_{0} go to zero. As usual we have to estimate the largest value of $|f(z)|$. Over γ_{2} we have

$$
\begin{aligned}
|f(z)| & =\frac{|\log z|}{\left|z^{3}+1\right|} \\
& \leq \frac{\ln R+2 \pi}{R^{3}-1} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{\log z}{z^{3}+1} \mathrm{~d} z\right| & \leq L M \\
& \leq \frac{2 \pi R(\ln R+2 \pi)}{R^{3}-1}
\end{aligned}
$$

which goes to zero as R goes to infinity. Over γ_{0} we have

$$
\begin{aligned}
|f(z)| & =\frac{|\log z|}{\left|z^{3}+1\right|} \\
& \leq \frac{2 \pi-\ln \rho}{1-\rho^{3}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{\log z}{z^{3}+1} \mathrm{~d} z\right| & \leq L M \\
& \leq \frac{2 \pi \rho(2 \pi-\ln \rho)}{1-\rho^{3}}
\end{aligned}
$$

which goes to zero as ρ goes to zero, since $\rho \ln \rho$ goes to zero.
The integral over γ_{+}is equal to

$$
\int_{\gamma_{+}} \frac{\log z}{z^{3}+1} \mathrm{~d} z=\int_{\rho}^{R} \frac{\ln x}{x^{3}+1} \mathrm{~d} x
$$

Finally, for the integral over γ_{-}we use the same parametrisation

$$
z=x \quad \text { where } \quad x \in[\rho, R]
$$

but with a different branch of the logarithm

$$
\log z=\ln x+2 \pi i
$$

This traverses γ_{-}in the wrong direction, so we flip the sign.

$$
\int_{\gamma_{-}} \frac{\log z}{z^{3}+1} \mathrm{~d} z=-\int_{\rho}^{R} \frac{\ln x}{x^{3}+1} \mathrm{~d} x-2 \pi i \int_{\rho}^{R} \frac{\mathrm{~d} x}{x^{3}+1} .
$$

Letting ρ go to zero and R go to infinity we get:

$$
-2 \pi i I=-2 \pi i \frac{2 \pi}{3 \sqrt{3}}
$$

Solving for I gives

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{x^{3}+1}=\frac{2 \pi}{3 \sqrt{3}} .
$$

