
MODEL ANSWERS TO THE ZEROTH HOMEWORK

1. We have,

e2z sin(5z)

1− z
=
(
1 + 2z + 2z2 + . . .

)(
5z − 125

6
z3 + . . .

)(
1 + z + z2 + . . .

)
= 0 + 5z + 15z2 +

(
10 + 10 + 5− 125

6

)
z3 + . . .

= 0 + 5z + 15z2 +
25

6
z3 + . . . .

2.

z −→ e2z sin(5z − 1)

1− z
e2z, sin(5z − 1) and 1− z are all holomorphic, as the last function is a
polynomial and the first two functions are the composition of a poly-
nomial and a holomorphic function. The product of two holomorphic
functions is holomorphic and the quotient of two holomorphic functions
is holomorphic, away from the zeroes of the denominator.
The proof of Cauchy’s formula shows that a function has a power series
expansion based at any point where it is holomorphic. Moreover the
function is not holomorphic somewhere on the circle defined by the
radius of convergence. Since the only point where the function is not
holomorphic is at 1, the point 1 must be on this circle. The distance
of a to 1 is |a− 1| and so this is the radius of convergence.
3. Suppose we try

z −→ az + b

cz + d
.

As ∞ goes to −1, we have
a

c
= −1 so that c = −a.

Thus we are reduced to

z −→ az + b

d− az
.

As 0 goes to i, we have

b

d
= i so that b = id.

Thus we are reduced to

z −→ az + id

d− az
.
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As 1 goes to 1 we have

a+ id

d− a
= 1 so that a+ id = d− a

It follows that

2a = d(1− i).
If we put d = 2 then a = 1− i. Thus we want

z −→ (1− i)z + 2i

2 + (i− 1)z
.

The points 0, 1 and ∞ belong to the real line. They are sent to three
points of the unit circle, 1, i and −1. Thus the real line is mapped to
the unit circle.
The upper half plane is sent to to one of

• ∆, the open unit disk, |z| < 1, or
• the complement of the closed unit disk |z| > 1.

But i is sent to
(1− i)i+ 2i

2 + (i− 1)i
=

1 + 3i

1− i
.

The number 1 + 3i is further from 0 than 1 = i so the point i gets sent
to a point of modulus bigger than one.
The upper half plane H is sent to the exterior of the unit circle.
4. (i) We use the paramaterisation

z = a+ reiθ.

In this case

dz = ireiθ dθ.

It follows that∮
|z−a|=r

(z − a)m dz =

∫ 2π

0

rmemiθireiθ dθ

= irm+1

∫ 2π

0

e(m+1)iθ dθ.

So are down to calculating the definite integral:∫ 2π

0

e(m+1)iθ dθ.

This caculation breaks into two cases. Suppose that m+ 1 6= 0. Then
the integral is zero. Indeed the anti-derivative of e(m+1)iθ is 1

m+1
e(m+1)iθ

and when we calculate this at the two endpoints 0 and 2π we get the
same answer, so that the difference is zero.
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This argument breaks down if m+1 = 0. In this case we are integrating
1 over the interval [0, 2π] and the answer is 2π. In this case irm+1 = i.
Thus ∮

|z−a|=r
(z − a)m dz =

{
2πi when m = −1

0 otherwise.

(ii) Suppose that m ≥ 0. Then (z − a)m is holomorphic on the closed
disk |z − a| ≤ r and so Cauchy’s theorem implies that∮

|z−a|=r
(z − a)m dz = 0.

Suppose that m = −1. Then we are integrating

f(z)

z − a
=

1

z − a
so that f(z) = 1.

Cauchy’s integral formula implies that

1 = f(a)

=
1

2πi

∮
|z−a|=r

1

z − a
dz.

Thus ∮
|z−a|=r

(z − a)m dz = 2πi.

Now suppose that m ≤ −2. Then we apply Cauchy’s formula. If we
differentiate f(z) = 1 we get zero. Therefore

0 = f (−m−1)(a)

=
1

2πi

∮
|z−a|=r

1

(z − a)−m
dz.

5.
1

(z2 − 1)(z2 − 9)

has isolated singularities at ±1 and ±3. There are two relevant circles
centred at 0, the circle of radius 1, which contains the singularities ±1
and the circle of radius 3, which contains the singularities ±3.
These two circles divide the complex plane into three annuli,

U0 = { z ∈ C | |z| < 1 } = ∆

U1 = { z ∈ C | 1 < |z| < 3 }
U2 = { z ∈ C | 3 < |z| }.

3



To each annulus there is an associated Laurent expansion. For U0 we
want a power series centred at 0. We have

1

(z2 − 1)(z2 − 9)
=

1

1− z2
1/9

1− z2/9

=
1

9
(1 + z2 + z4 + z6 + . . . )

(
1 +

z2

9
+
z4

81
+ . . .

)
=

1

9
+

10

81
z2 +

1

9

(
1 +

1

9
+

1

81

)
z4 + . . . .

For U2 we want a series centred at 0 that converges at ∞. We have

1

(z2 − 1)(z2 − 9)
=

1/z2

1− 1/z2
1/z2

1− 9/z2

=
1

z4

(
1 +

1

z2
+

1

z4
+

1

z6
+ . . .

)(
1 +

9

z2
+

81

z4
+ . . .

)
=

1

z4
+

10

z6
+ 91

1

z8
+ . . . .

For U1 we want a Laurent series. We could try multiplying two series
as above

1

(z2 − 1)(z2 − 9)
= − 1/z2

1− 1/z2
1/9

1− (z/3)2

= − 1

9z2

(
1 +

1

z2
+

1

z4
+

1

z6
+ . . .

)(
1 +

z2

9
+
z4

81
+ . . .

)
.

However at this point we are stuck. It is not possible to make sense
of multiplying the two series above algebraically (e.g. to calculate the
constant term you would need to take a term of the form 1/z2m from
the first bracket and a term of the form z2m+2 from the second bracket
and there are infinitely many such terms). One can make sense of this
analytically, supposing the coefficients form an absolutely convergent
series, but this doesn’t like a sensible way to proceed.
Instead we first use partial fractions to simplify the situation,

1

(z2 − 1)(z2 − 9)
= − 1

8(1− z2)
+

1

8(z2 − 9)

= − 1/8z2

1− 1/z2
− 1/72

1− z2/9

= − 1

8z2

(
1 +

1

z2
+

1

z4
+

1

z6
+ . . .

)
− 1

9

(
1 +

z2

9
+
z4

81
+ . . .

)
.
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6.
zez

z2 − 1
has isolated singularities at ±1. They are both simple poles.
7.

f(z) =
sin z

z2

has a simple pole at zero. It follows that

Res0
sin z

z2
= Res0 f(z)

= lim
z→0

zf(z)

= lim
z→0

sin z

z

= lim
z→0

cos z

1
= 1.

Here we applied L’Hôpital’s rule to get from the third line to the fourth
line.

Challenge Problems: (Just for fun)
8. We first start by writing down examples.

z −→ z + 1

has one fixed point. It does not fix any complex number but it does
fix ∞.

z −→ 1

z
has two fixed points. It fixes ±1. It switches 0 and ∞ and it is not
hard to see that if z is a complex number and

z =
1

z
then z = ±1.

z −→ z

fixes everything. The only map with this property is the identity.
Now we turn to the general problem. First note that if M fixes infinity
then c = 0 so that M(z) reduces to

z −→ az + b

If
z = az + b then (a− 1)z = b.
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If a 6= 1 then this equation has one solution and if a 6= 1 then it has
no solutions, unless b = 0 in which case it is the identity.
So we may assume it does not fix ∞. In this case c 6= 0 and we may
assume c = 1. For a fixed point we have

z =
az + b

z + d
so that z(z + d) = az + b.

Expanding we get

z2 + (d− a)z + b = 0.

This is a quadratic equation for z. So it has one or two solutions and
there are one or two fixed points.
9. Note that as U is open and connected it is path connected. Fix z0.
Given z ∈ U pick a path γ from z0 to z and define

F (z) =

∫
γ

f(z) dz.

The problem with this definition is that the integral might depend on
the path.
Suppose that γ1 and γ2 are two paths connecting z0 to z. Then

γ = γ1 − γ2
is a closed path starting and ending at z0. We first go along γ1 from z0
to z and then we go back along γ2 from z to z0. By hypothesis

0 =

∫
γ

f(z) dz

=

∫
γ1−γ2

f(z) dz

=

∫
γ1

f(z) dz −
∫
γ2

f(z) dz.

Thus ∫
γ1

f(z) dz =

∫
γ2

f(z) dz.

It follows that the definition of F (z) does not depend on the path, so
that we may write

F (z) =

∫ z

z0

f(z) dz.

Now we calculate the derivative of F (z). By definition

F ′(a) = lim
z→a

F (z)− F (a)

z − a
.
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We start with the numerator:

F (z)− F (a) =

∫ z

z0

f(z) dz −
∫ a

z0

f(z) dz

=

∫ z

a

f(z) dz.

If z is close enough to a then we can draw a straight line from a to z.
If we paramaterise this we get

γ(t) = a+ t(z − a) where t ∈ [0, 1].

We get ∫ z

a

f(z) dz =

∫ 1

0

(z − a)f(a+ t(z − a)) dt

= (z − a)

∫ 1

0

f(a+ t(z − a)) dt.

Thus

F ′(a) = lim
z→a

F (z)− F (a)

z − a

= lim
z→a

∫ 1

0

f(a+ t(z − a)) dt

=

∫ 1

0

lim
z→a

f(a+ t(z − a)) dt

=

∫ 1

0

f(a) dt

= f(a).

Thus f(z) is the derivative of F (z).
It follows that F (z) is holomorphic. As F (z) is holomorphic it is infin-
itely differentiable. But then f(z) is holomorphic.
10. We have ∫

γ

f(z) dz =

∫
γ

lim
n→∞

fn(z) dz

= lim
n→∞

∫
γ

fn(z) dz

= lim
n→∞

0

= 0.
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To get from the first line to the second line we used uniform continuity
and to get from the second line to the third line we use Cauchy’s
theorem. Morera’s theorem implies that f(z) is holomorphic.
Now we apply Cauchy’s formula:

f ′(a) =
1

πi

∫
|z−a|=r

f(z)

(z − a)2
dz

=
1

πi

∫
|z−a|=r

lim
n→∞

fn(z)

(z − a)2
dz

= lim
n→∞

1

πi

∫
|z−a|=r

fn(z)

(z − a)2
dz

= lim
n→∞

f ′n(a).

This gives pointwise convergence of the derivative. Uniform conver-
gence follows from standard results about uniform convergence (which
we won’t prove in this course).
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