MODEL ANSWERS TO THE FIRST HOMEWORK

1. Applying Example 2.2 with $a=1$, we get

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}+1\right)^{2}}=\pi
$$

As the integrand is even this means

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}+1\right)^{2}}=\frac{\pi}{2}
$$

2. We calculate

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{x^{4}+1}
$$

and divide by 2 . We integrate over the standard contour γ_{1} from $-R$ to R and the semicircle of radius R centred at 0 in the upper half plane, γ_{2}. The integrand is

$$
f(z)=\frac{1}{z^{4}+1} .
$$

This has isolated singularities at the zeroes of $z^{4}+1$. This is the same as the fourth roots of -1 , which is the same as the eighth roots of unity, which are not fourth roots of unity. So the singularities of $f(z)$ are at

$$
e^{i \pi / 4} \quad e^{3 i \pi / 4} \quad e^{5 i \pi / 4} \quad \text { and } \quad e^{7 i \pi / 4}
$$

Of these, only the first two are in the upper half plane (in fact, since these are roots of a real polynomial the roots come in complex conjugate pairs; two roots are above the real axis and two roots are below).
We compute the residues at these two points. Both of them are simple poles. We have

$$
\begin{aligned}
& \operatorname{Res}_{e^{i \pi / 4}} f(z)=\lim _{z \rightarrow e^{i \pi / 4}} \frac{\left(z-e^{i \pi / 4}\right)}{z^{4}+1} \\
&=\lim _{z \rightarrow e^{i \pi / 4}} \frac{1}{4 z^{3}} \\
&=\frac{1}{4 e^{3 i \pi / 4}} \\
&=\frac{1}{4} e^{-3 i \pi / 4} \\
& 1
\end{aligned}
$$

By contrast

$$
\begin{aligned}
\operatorname{Res}_{e^{3 i \pi / 4}} f(z) & =\lim _{z \rightarrow e^{3 i \pi / 4}} \frac{\left(z-e^{3 i \pi / 4}\right)}{z^{4}+1} \\
& =\lim _{z \rightarrow e^{3 i \pi / 4}} \frac{1}{4 z^{3}} \\
& =\frac{1}{4 e^{9 i \pi / 4}} \\
& =\frac{1}{4 e^{i \pi / 4}} \\
& =\frac{1}{4} e^{-i \pi / 4}
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{\gamma} \frac{\mathrm{d} z}{z^{4}+1} & =2 \pi i\left(\operatorname{Res}_{e^{i \pi / 4}} f(z)+\operatorname{Res}_{e^{3 i \pi / 4}} f(z)\right) \\
& =2 \pi i\left(\frac{1}{4} e^{-3 i \pi / 4}+\frac{1}{4} e^{-i \pi / 4}\right) \\
& =\frac{\pi i}{2}\left(-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right) \\
& =\frac{\pi}{\sqrt{2}}
\end{aligned}
$$

As the improper integral

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{x^{4}+1}
$$

converges, the integral over the interval $[-R, R]$ converges to the integral we want to compute, in the usual way.
The length L of the semicircle is πR and we have to estimate the maximum value M of $|f(z)|$ over the semicircle

$$
\begin{aligned}
|f(z)| & =\left|\frac{1}{z^{4}+1}\right| \\
& =\frac{1}{\left|z^{4}+1\right|} \\
& \leq \frac{1}{R^{4}-1}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{\mathrm{~d} z}{z^{4}-1}\right| & \leq L M \\
& \leq \frac{\pi R}{R^{4}-1}
\end{aligned}
$$

The key point is that this rational fraction is bottom heavy, so that as R goes to infinity the rational function goes to zero. It follows that

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{x^{4}+1}=\frac{\pi}{\sqrt{2}}
$$

Therefore

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{x^{4}+1}=\frac{\pi}{2 \sqrt{2}}
$$

3. We calculate

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{x^{6}+1}
$$

and divide by 2 . We integrate over the standard contour γ_{1} from $-R$ to R and the semicircle of radius R centred at 0 in the upper half plane, γ_{2}. The integrand is

$$
f(z)=\frac{1}{z^{6}+1} .
$$

This has isolated singularities at the zeroes of $z^{6}+1$. This is the same as the sixth roots of -1 , which is the same as the twelfth roots of unity, which are not sixth roots of unity. So the singularities of $f(z)$ in the upper half plane are located at

$$
e^{i \pi / 6} \quad e^{3 i \pi / 6}=e^{i \pi / 2} \quad \text { and } \quad e^{5 i \pi / 6}
$$

The other three isolated singularities are in the lower half plane.
We compute the residues at these three points. All three of them are simple poles. We have

$$
\begin{aligned}
\operatorname{Res}_{e^{i \pi / 6}} f(z) & =\lim _{z \rightarrow e^{i \pi / 6}} \frac{\left(z-e^{i \pi / 6}\right)}{z^{6}+1} \\
& =\lim _{z \rightarrow e^{i \pi / 4}} \frac{1}{6 z^{5}} \\
& =\frac{1}{6 e^{5 i \pi / 6}} \\
& =\frac{1}{6} e^{-5 i \pi / 6}
\end{aligned}
$$

We also have

$$
\begin{aligned}
\operatorname{Res}_{e^{i \pi / 2}} f(z) & =\frac{1}{6 e^{5 i \pi / 2}} \\
& =\frac{1}{6} e^{-5 i \pi / 2} \\
& =\frac{1}{6} e^{-i \pi / 2},
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Res}_{e^{5 i \pi / 6}} f(z) & =\frac{1}{6 e^{25 i \pi / 6}} \\
& =\frac{1}{6} e^{-25 i \pi / 6} \\
& =\frac{1}{6} e^{-i \pi / 6} .
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{\gamma} \frac{\mathrm{d} z}{z^{6}+1} & =2 \pi i\left(\operatorname{Res}_{e^{i \pi / 6}} f(z)+\operatorname{Res}_{e^{i \pi / 2}} f(z)+\operatorname{Res}_{e^{5 i \pi / 6}} f(z)\right) \\
& =2 \pi i\left(\frac{1}{6} e^{-5 i \pi / 6}+\frac{1}{6} e^{-i \pi / 2}+\frac{1}{6} e^{-i \pi / 6}\right) \\
& =\frac{\pi i}{3}\left(-\frac{\sqrt{3}}{2}-\frac{i}{2}-i+\frac{\sqrt{3}}{2}-\frac{i}{2}\right) \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

As the improper integral

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{x^{6}+1}
$$

converges, the integral over the interval $[-R, R]$ converges to the integral we want to compute, in the usual way.
The length L of the semicircle is πR and we have to estimate the maximum value M of $|f(z)|$ over the semicircle

$$
\begin{aligned}
|f(z)| & =\left|\frac{1}{z^{6}+1}\right| \\
& =\frac{1}{\left|z^{6}+1\right|} \\
& \leq \frac{1}{R^{6}-1} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{\mathrm{~d} z}{z^{6}+1}\right| & \leq L M \\
& \leq \frac{\pi R}{R^{6}-1}
\end{aligned}
$$

As this rational fraction is bottom heavy, the rational function goes to zero, as R goes to infinity. It follows that

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{x^{6}+1}=\frac{2 \pi}{3}
$$

Hence

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{x^{6}+1}=\frac{\pi}{3}
$$

4. We integrate over the standard contour γ_{1} from $-R$ to R and the semicircle of radius R centred at 0 in the upper half plane, γ_{2}. The integrand is

$$
f(z)=\frac{1}{z^{2}+2 z+2} .
$$

This has isolated singularities at the zeroes of $z^{2}+2 z+2$. As this is a real polynomial, one zero is in the upper half plane, one in the lower. If we complete the square we want to solve

$$
(z+1)^{2}+1=0 \quad \text { so that } \quad z=-1 \pm i
$$

The singularity in the upper half plane is $-1+i$.
As this is a simple zero we have

$$
\begin{aligned}
\operatorname{Res}_{-1+i} f(z) & =\lim _{z \rightarrow-1+i} \frac{(z+1-i)}{z^{2}+2 z+1} \\
& =\lim _{z \rightarrow-1+i} \frac{1}{2(z+1)} \\
& =\frac{1}{2 i} \\
& =-\frac{i}{2} .
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{\gamma} \frac{\mathrm{d} z}{z^{2}+2 z+1} & =2 \pi i \operatorname{Res}_{-1+i} f(z) \\
& =2 \pi i \cdot-\frac{i}{2} \\
& =\pi \\
& \quad 5
\end{aligned}
$$

As the improper integral

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{x^{2}+2 x+2}
$$

converges, the integral over the interval $[-R, R]$ converges to the integral we want to compute, in the usual way.
The length L of the semicircle is πR and we have to estimate the maximum value M of $|f(z)|$ over the semicircle

$$
\begin{aligned}
|f(z)| & =\left|\frac{1}{z^{2}+2 z+1}\right| \\
& =\frac{1}{\left|z^{2}+2 z+1\right|} \\
& \leq \frac{1}{R^{2}-2 R-1} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{\mathrm{~d} z}{z^{6}+1}\right| & \leq L M \\
& \leq \frac{\pi R}{R^{2}-2 R-1}
\end{aligned}
$$

As this rational fraction is bottom heavy, the rational function goes to zero, as R goes to infinity. It follows that

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{x^{2}+2 x+2}=\pi
$$

5. Let $\gamma=\gamma_{1}+\gamma_{2}+\gamma_{3}$ be the contour consisting of γ_{1} the line segment from 0 to R, γ_{2} the arc of the circle from R to $R e^{2 \pi i / 3}$ and γ_{3} the line segment from $R e^{2 \pi i / 3}$ to 0 .
If U is the intersection of the angular sector between 0 and $2 \pi / 3$ and the circle of radius R centred at the origin

$$
U=\{z \in \mathbb{C}|0<\operatorname{Arg}(z)<2 \pi / 3,0<|z|<R\}
$$

then the boundary of U is γ.
Let

$$
f(z)=\frac{1}{z^{3}+1} .
$$

The poles of $f(z)$ are located at the cube roots of -1 . These are the sixth roots of unity which are not cube roots of unity:

$$
e^{\pi i / 3} ; \quad e^{3 \pi i / 3}=e^{\pi i} \quad \text { and } \quad e^{5 \pi i / 3}
$$

Of these only the first belongs to U (assuming $R>1$).

All of these are simple singularities. We have

$$
\begin{aligned}
\operatorname{Res}_{e^{\pi i / 3}} f(z) & =\lim _{z \rightarrow e^{i \pi / 3}} \frac{z-e^{i \pi / 3}}{z^{3}+1} \\
& =\lim _{z \rightarrow e^{i \pi / 3}} \frac{1}{3 z^{2}} \\
& =\frac{1}{3 e^{2 i \pi / 3}} \\
& =\frac{e^{-2 i \pi / 3}}{3}
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{\gamma} \frac{\mathrm{d} z}{z^{3}+1} & =2 \pi i \operatorname{Res}_{e^{\pi i / 3}} f(z) \\
& =\frac{2 \pi i}{3} e^{-2 i \pi / 3}
\end{aligned}
$$

As

$$
I=\int_{0}^{\infty} \frac{\mathrm{d} x}{x^{3}+1}
$$

is an improper integral which converges, the integral over γ_{1} approaches this integral as R goes to infinity:

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \int_{\gamma_{1}} \frac{\mathrm{~d} z}{z^{3}+1} & =\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{\mathrm{~d} x}{x^{3}+1} \\
& =\int_{0}^{\infty} \frac{\mathrm{d} x}{x^{3}+1} \\
& =I .
\end{aligned}
$$

We estimate the integral over γ_{2}. The length L of γ_{2} is $2 \pi R / 3$. The maximum value M of $|f(z)|$ is

$$
\begin{aligned}
|f(z)| & =\left|\frac{1}{z^{3}+1}\right| \\
& =\frac{1}{\left|z^{3}+1\right|} \\
& \leq \frac{1}{R^{3}-1} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{\mathrm{~d} z}{z^{3}+1}\right| & \leq L M \\
& \frac{2 \pi R}{3\left(R^{2}-1\right)}
\end{aligned}
$$

As this goes to zero as R goes to infinity, it follows that the integral over γ_{2} goes to zero.
For the integral over γ_{3} we use the parameterisation

$$
\gamma_{3}(t)=(R-t) e^{2 \pi i / 3} \quad \text { where } \quad t \in[0, R]
$$

We have

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \int_{\gamma_{3}} \frac{\mathrm{~d} z}{z^{3}+1} & =-e^{2 \pi i / 3} \lim _{R \rightarrow \infty} \int_{0}^{R} \frac{\mathrm{~d} t}{t^{3}+1} \\
& =-e^{2 \pi i / 3} \int_{0}^{\infty} \frac{\mathrm{d} x}{x^{3}+1} \\
& =-e^{2 \pi i / 3} I
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\frac{2 \pi i}{3} e^{-2 i \pi / 3} & =I-e^{2 \pi i / 3} I \\
& =\left(1-e^{2 \pi i / 3}\right) I
\end{aligned}
$$

Let

$$
\omega=e^{2 \pi i / 3} \quad \text { so that } \quad \omega^{3}=1
$$

We have

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\mathrm{d} x}{x^{3}+1} & =I \\
& =\frac{2 \pi i}{3} \frac{e^{-2 i \pi / 3}}{1-e^{2 \pi i / 3}} \\
& =\frac{2 \pi i}{3} \frac{\omega^{2}}{1-\omega} \\
& =\frac{2 \pi i}{3} \frac{\omega^{3}}{\omega-\omega^{2}} \\
& =\frac{2 \pi i}{3} \frac{1}{i \sqrt{3}} \\
& =\frac{2 \pi}{3 \sqrt{3}}
\end{aligned}
$$

6 . We use the standard contour and we integrate

$$
f(z)=\frac{z e^{i z}}{\left(z^{2}+1\right)\left(z^{2}+4\right)}
$$

This has poles at $\pm i$ and $\pm 2 i$. All of these are simple poles and i and $2 i$ are the only singularities in the upper half plane.

We have

$$
\begin{aligned}
\operatorname{Res}_{i} f(z) & =\lim _{z \rightarrow i} \frac{(z-i) z e^{i z}}{\left(z^{2}+1\right)\left(z^{2}+4\right)} \\
& =\lim _{z \rightarrow i} \frac{z e^{i z}}{(z+i)\left(z^{2}+4\right)} \\
& =\frac{i e^{-1}}{(i+i)(-1+4)} \\
& =\frac{1}{6 e}
\end{aligned}
$$

We also have

$$
\begin{aligned}
\operatorname{Res}_{2 i} f(z) & =\lim _{z \rightarrow 2 i} \frac{(z-2 i) z e^{i z}}{\left(z^{2}+1\right)\left(z^{2}+4\right)} \\
& =\lim _{z \rightarrow 2 i} \frac{z e^{i z}}{\left(z^{2}+1\right)(z+2 i)} \\
& =\frac{2 i e^{-2}}{(-3)(4 i)} \\
& =-\frac{1}{6 e^{2}} .
\end{aligned}
$$

The residue theorem implies

$$
\begin{aligned}
\int_{\gamma} \frac{z^{i z} \mathrm{~d} z}{\left(z^{2}+1\right)\left(z^{2}+4\right)} & =2 \pi i\left(\operatorname{Res}_{i} f(z)+\operatorname{Res}_{2 i} f(z)\right) \\
& =\frac{\pi i}{3} \frac{e-1}{e^{2}}
\end{aligned}
$$

The improper integral

$$
\int_{-\infty}^{\infty} \frac{x e^{i x} \mathrm{~d} x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}
$$

converges, since the absolute value of the integrand

$$
\frac{x^{i x}}{\left(x^{2}+1\right)\left(x^{2}+4\right)}
$$

looks like $1 / x^{3}$ when x is large and the integral of $1 / x^{3}$ converges. Taking the limit as R goes to ∞ it follows that the integral over γ_{1} of $f(z)$ converges to the integral we are after.

For the integral over γ_{2} we have to estimate M :

$$
\begin{aligned}
|f(z)| & =\left|\frac{z e^{i z}}{\left(z^{2}+1\right)\left(z^{2}+4\right)}\right| \\
& =\frac{\left|z e^{i z}\right|}{\left|\left(z^{2}+1\right)\left(z^{2}+4\right)\right|} \\
& \leq \frac{R}{\left(R^{2}-1\right)\left(R^{2}-4\right)} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\int_{\gamma} \frac{z e^{i z} \mathrm{~d} z}{\left(z^{2}+1\right)\left(z^{2}+4\right)}\right| & \leq L M \\
& \leq \frac{\pi R^{2}}{\left(R^{2}-1\right)\left(R^{2}-4\right)}
\end{aligned}
$$

which goes to zero as R goes to infinity.
It follows that

$$
\int_{-\infty}^{\infty} \frac{x e^{i x} \mathrm{~d} x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{\pi i}{3} \frac{e-1}{e^{2}}
$$

Taking the imaginary parts gives

$$
\int_{-\infty}^{\infty} \frac{x \sin x \mathrm{~d} x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{\pi}{3} \frac{e-1}{e^{2}} .
$$

7. We integrate

$$
f(z)=\frac{e^{i z}}{z^{2}+4 z+5}
$$

over the standard contour. The singularities of $f(z)$ are at the zeroes of $z^{2}+4 z+5$. We have

$$
z^{2}+4 z+5=(z+2)^{2}+1
$$

Hence the roots of $z^{2}+4 z+5$ are at

$$
-2 \pm i
$$

Both are simple poles and of these $-2+i$ is in the upper half plane.
The residue at $-2+i$ is

$$
\begin{aligned}
\operatorname{Res}_{-2+i} f(z) & =\lim _{z \rightarrow-2+i}(z+2-i) \frac{e^{i z}}{z^{2}+4 z+5} \\
& =\lim _{z \rightarrow-2+i} \frac{e^{i z}}{(z+2+i)} \\
& =\frac{e^{-1-2 i}}{2 i}
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{\gamma} \frac{e^{i z} \mathrm{~d} z}{z^{2}+4 z+5} & =2 \pi i \frac{e^{-1-2 i}}{2 i} \\
& =\pi e^{-1-2 i}
\end{aligned}
$$

As the improper integral

$$
\int_{-\infty}^{\infty} \frac{e^{i x} \mathrm{~d} x}{x^{2}+4 x+5}
$$

converges the integral over γ_{1} tends to this integral as we let R go infinity.
For the integral over γ_{2}, we have

$$
\begin{aligned}
|f(z)| & =\left|\frac{e^{i z}}{z^{2}+4 z+5}\right| \\
& =\frac{\left|e^{i z}\right|}{\left|z^{2}+4 z+5\right|} \\
& \leq \frac{1}{R^{2}-4 R-5} .
\end{aligned}
$$

If follows that

$$
\begin{aligned}
\left|\int_{-\infty}^{\infty} \frac{e^{i z} \mathrm{~d} z}{z^{2}+4 z+5}\right| & \leq L M \\
& \leq \frac{\pi R}{R^{2}-4 R-5}
\end{aligned}
$$

which goes to zero as R goes to infinity.
Hence

$$
\int_{-\infty}^{\infty} \frac{e^{i x} \mathrm{~d} x}{x^{2}+4 x+5}=\pi e^{-1-2 i}
$$

To finish we just need to take the imaginary part of both sides. We have

$$
\begin{aligned}
\pi e^{-1-2 i} & =\frac{\pi}{e} e^{-2 i} \\
& =\frac{\pi}{e}(\cos 2-i \sin 2)
\end{aligned}
$$

Therefore

$$
\int_{-\infty}^{\infty} \frac{\sin x \mathrm{~d} x}{x^{2}+4 x+5}=-\frac{\pi}{e} \sin 2
$$

8. We integrate

$$
f(z)=\frac{e^{i a z}}{\left(z^{2}+b^{2}\right)^{2}}
$$

over the standard contour. As the improper integral

$$
\int_{-\infty}^{\infty} \frac{e^{i a x}}{\left(x^{2}+b^{2}\right)^{2}} \mathrm{~d} x
$$

converges, we have

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \int_{\gamma_{1}} \frac{e^{i a z}}{\left(z^{2}+b^{2}\right)^{2}} \mathrm{~d} z & =\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{e^{i a x}}{\left(x^{2}+b^{2}\right)^{2}} \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} \frac{e^{i a x}}{\left(x^{2}+b^{2}\right)^{2}} \mathrm{~d} x
\end{aligned}
$$

For the integral over γ_{2} we have

$$
\begin{aligned}
|f(z)| & =\frac{\left|e^{i a z}\right|}{\left|z^{2}+b^{2}\right|^{2}} \\
& \leq \frac{1}{\left(R^{2}-b^{2}\right)^{2}} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{e^{i a z}}{\left(z^{2}+b^{2}\right)^{2}} \mathrm{~d} z\right| & \leq L M \\
& \leq \frac{\pi R}{\left(R^{2}-b^{2}\right)^{2}}
\end{aligned}
$$

which goes to zero, as R goes to infinity.
$f(z)$ has isolated singularities at $\pm i b$ and only $i b$ belongs to the upper half plane. As this is a double pole we have

$$
\begin{aligned}
\operatorname{Res}_{i b} f(z) & =\lim _{z \rightarrow i b} \frac{\mathrm{~d}}{\mathrm{~d} z}(z-i b)^{2} \frac{e^{i a z}}{\left(z^{2}+b^{2}\right)^{2}} \\
& =\lim _{z \rightarrow i b} \frac{\mathrm{~d}}{\mathrm{~d} z} \frac{e^{i a z}}{(z+i b)^{2}} \\
& =\lim _{z \rightarrow i b} \frac{i a e^{i a z}(z+i b)^{2}-2 e^{i a z}(z+i b)}{(z+i b)^{4}} \\
& =\lim _{z \rightarrow i b} \frac{i a(z+i b)-2}{(z+i b)^{3}} e^{i a z} \\
& =\frac{i a(2 i b)-2}{(2 i b)^{3}} e^{-a b} \\
& =-i \frac{a b+1}{4 b^{3}} e^{-a b} .
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{e^{i a x}}{\left(x^{2}+b\right)^{2}} \mathrm{~d} x & =2 \pi i \operatorname{Res}_{i b} f(z) \\
& =2 \pi i \cdot-i \frac{a b+1}{4 b^{3}} e^{-a b} \\
& =\frac{2 \pi}{4 b^{3}}(1+a b) e^{-a b}
\end{aligned}
$$

Taking the real part gives

$$
\int_{0}^{\infty} \frac{\cos a x}{\left(x^{2}+b\right)^{2}} \mathrm{~d} x=\frac{2 \pi}{4 b^{3}}(1+a b) e^{-a b}
$$

Finally, using the fact $\cos a x$ is even we get

$$
\int_{0}^{\infty} \frac{\cos a x}{\left(x^{2}+b\right)^{2}} \mathrm{~d} x=\frac{\pi}{4 b^{3}}(1+a b) e^{-a b}
$$

9. We integrate

$$
f(z)=\frac{e^{i a z}}{\left(z^{2}+b^{2}\right)^{2}}
$$

over the standard contour. As the improper integral

$$
\int_{-\infty}^{\infty} \frac{e^{i a x}}{\left(x^{2}+b^{2}\right)^{2}} d x
$$

converges, we have

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \int_{\gamma_{1}} \frac{e^{i a z}}{\left(z^{2}+b^{2}\right)^{2}} \mathrm{~d} z & =\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{e^{i a x}}{\left(x^{2}+b^{2}\right)^{2}} \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} \frac{e^{i a x}}{\left(x^{2}+b^{2}\right)^{2}} \mathrm{~d} x
\end{aligned}
$$

For the integral over γ_{2} we have

$$
\begin{aligned}
|f(z)| & =\frac{\left|e^{i a z}\right|}{\left|z^{2}+b^{2}\right|^{2}} \\
& \leq \frac{1}{\left(R^{2}-b^{2}\right)^{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{e^{i a z}}{\left(z^{2}+b^{2}\right)^{2}} \mathrm{~d} z\right| & \leq L M \\
& \leq \frac{\pi R}{\left(R^{2}-b^{2}\right)^{2}}
\end{aligned}
$$

which goes to zero, as R goes to infinity.
$f(z)$ has isolated singularities at $\pm i b$ and only $i b$ belongs to the upper half plane. As this is a double pole we have

$$
\begin{aligned}
& \operatorname{Res}_{i b} f(z)=\lim _{z \rightarrow i b} \frac{\mathrm{~d}}{\mathrm{~d} z}(z-i b)^{2} \frac{e^{i a z}}{\left(z^{2}+b^{2}\right)^{2}} \\
&=\lim _{z \rightarrow i b} \frac{\mathrm{~d}}{\mathrm{~d} z} \frac{e^{i a z}}{(z+i b)^{2}} \\
&=\lim _{z \rightarrow i b} \frac{i a e^{i a z}(z+i b)^{2}-2 e^{i a z}(z+i b)}{(z+i b)^{4}} \\
&=\lim _{z \rightarrow i b} \frac{i a(z+i b)-2}{(z+i b)^{3}} e^{i a z} \\
&=\frac{i a(2 i b)-2}{(2 i b)^{3}} e^{-a b} \\
&=-i \frac{a b+1}{4 b^{3}} e^{-a b} . \\
& 14
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{e^{i a x}}{\left(x^{2}+b\right)^{2}} \mathrm{~d} x & =2 \pi i \operatorname{Res}_{i b} f(z) \\
& =2 \pi i \cdot-i \frac{a b+1}{4 b^{3}} e^{-a b} \\
& =\frac{2 \pi}{4 b^{3}}(1+a b) e^{-a b}
\end{aligned}
$$

Taking the real part gives

$$
\int_{0}^{\infty} \frac{\cos a x}{\left(x^{2}+b\right)^{2}} \mathrm{~d} x=\frac{2 \pi}{4 b^{3}}(1+a b) e^{-a b}
$$

Finally, using the fact $\cos a x$ is even we get

$$
\int_{0}^{\infty} \frac{\cos a x}{\left(x^{2}+b\right)^{2}} \mathrm{~d} x=\frac{\pi}{4 b^{3}}(1+a b) e^{-a b}
$$

Challenge Problems: (Just for fun)
10. We are going to use the answers to 2 and 3 as a guide to how to solve this problem. We do the usual things; integrate over the usual contour, argue that as R goes to infinity the integral over γ_{1} goes to twice the integral we want and the integral over the semircircle γ_{2} goes to zero, as the absolute value of the integral is bounded above by

$$
\frac{\pi R^{2 m+1}}{R^{2 n}-1}
$$

Putting all of this together we get

$$
\int_{0}^{\infty} \frac{x^{2 m}}{x^{2 n}+1} \mathrm{~d} x=\frac{1}{2} 2 \pi i \sum_{i=1}^{n} \operatorname{Res}_{a_{i}} f(z) \quad \text { where } \quad f(z)=\frac{z^{2 m}}{z^{2 n}-1}
$$

The hard part is to compute the sum of the residues. The singularities of $f(z)$ are located at the roots of $z^{2 n}+1$ in the upper half plane. The roots of $z^{2 n}+1$ are $2 n$th roots of -1 . These are the $4 n$th roots of unity which are not $2 n$th roots of unity. A $4 n$th root of unity is of the form

$$
e^{2 \pi i k / 4 n}=e^{\pi i k / 2 n}
$$

where k is an integer. If this is not a $2 n$th root of unity we should take k odd. To achieve this, simply replace k by $2 k-1$. The singularities in the upper half plane have argument between 0 and π. This means

$$
1 \leq 2 k-1 \leq 2 n
$$

It follows that the isolated singularities of $f(z)$ in the upper half plane are

$$
a_{k}=e^{\pi i(2 k-1) / 2 n} \quad \text { where } \quad 1 \leq k \leq n .
$$

All of these singularities are simple. Let us compute the residue of $f(z)$ at a_{k} :

$$
\begin{aligned}
\operatorname{Res}_{a_{k}} f(z) & =\lim _{z \rightarrow a_{k}}\left(z-a_{k}\right) f(z) \\
& =\lim _{z \rightarrow a_{k}} \frac{\left(z-a_{k}\right) z^{2 m}}{z^{2 n}+1} \\
& =\lim _{z \rightarrow a_{k}} \frac{z^{2 m}+2 m\left(z-a_{k}\right) z^{2 m-1}}{2 n z^{2 n-1}} \\
& =\frac{a_{k}^{2 m}}{2 n a_{k}^{2 n-1}} \\
& =\frac{a_{k}^{2 m+1-2 n}}{2 n} \\
& =-\frac{a_{k}^{2 m+1}}{2 n} \\
& =-\frac{e^{\pi i(2 k-1)(2 m+1) / 2 n}}{2 n} .
\end{aligned}
$$

The sum of the residues is then the sum of a geometric series

$$
-\frac{e^{\pi i(2 m+1) / 2 n}-e^{\pi i(2 n+1)(2 m+1) / 2 n}}{2 n\left(1-e^{\pi i(2 m+1) / n}\right)}
$$

We have

$$
\begin{aligned}
-\frac{e^{\pi i(2 m+1) / 2 n}-e^{\pi i(2 n+1)(2 m+1) / 2 n}}{2 n\left(1-e^{\pi i(2 m+1) / n}\right)} & =-e^{\pi i(2 m+1) / 2 n} \frac{1-e^{\pi i(2 n(2 m+1) / 2 n}}{2 n\left(1-e^{\pi i(2 m+1) / n}\right)} \\
& =-\frac{1}{n\left(e^{-\pi i(2 m+1) / 2 n}-e^{\pi i(2 m+1) / 2 n}\right)} \\
& =\frac{1}{2 n(i \sin ((2 m+1) / 2 n)} \\
& =-\frac{i}{2 n} \csc ((2 m+1) / 2 n)
\end{aligned}
$$

