
MODEL ANSWERS TO THE FIRST HOMEWORK

1. Applying Example 2.2 with a = 1, we get∫ ∞
−∞

dx

(x2 + 1)2
= π.

As the integrand is even this means∫ ∞
0

dx

(x2 + 1)2
=
π

2
.

2. We calculate ∫ ∞
−∞

dx

x4 + 1

and divide by 2. We integrate over the standard contour γ1 from −R to
R and the semicircle of radius R centred at 0 in the upper half plane,
γ2. The integrand is

f(z) =
1

z4 + 1
.

This has isolated singularities at the zeroes of z4 + 1. This is the same
as the fourth roots of −1, which is the same as the eighth roots of unity,
which are not fourth roots of unity. So the singularities of f(z) are at

eiπ/4 e3iπ/4 e5iπ/4 and e7iπ/4.

Of these, only the first two are in the upper half plane (in fact, since
these are roots of a real polynomial the roots come in complex conjugate
pairs; two roots are above the real axis and two roots are below).
We compute the residues at these two points. Both of them are simple
poles. We have

Reseiπ/4 f(z) = lim
z→eiπ/4

(z − eiπ/4)
z4 + 1

= lim
z→eiπ/4

1

4z3

=
1

4e3iπ/4

=
1

4
e−3iπ/4.
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By contrast

Rese3iπ/4 f(z) = lim
z→e3iπ/4

(z − e3iπ/4)
z4 + 1

= lim
z→e3iπ/4

1

4z3

=
1

4e9iπ/4

=
1

4eiπ/4

=
1

4
e−iπ/4.

The residue theorem implies that∫
γ

dz

z4 + 1
= 2πi(Reseiπ/4 f(z) + Rese3iπ/4 f(z))

= 2πi

(
1

4
e−3iπ/4 +

1

4
e−iπ/4

)
=
πi

2

(
− 1√

2
− i√

2
+

1√
2
− i√

2

)
=

π√
2
.

As the improper integral ∫ ∞
−∞

dx

x4 + 1

converges, the integral over the interval [−R,R] converges to the inte-
gral we want to compute, in the usual way.
The length L of the semicircle is πR and we have to estimate the
maximum value M of |f(z)| over the semicircle

|f(z)| =
∣∣∣∣ 1

z4 + 1

∣∣∣∣
=

1

|z4 + 1|

≤ 1

R4 − 1
.
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It follows that ∣∣∣∣∫
γ2

dz

z4 − 1

∣∣∣∣ ≤ LM

≤ πR

R4 − 1
.

The key point is that this rational fraction is bottom heavy, so that as
R goes to infinity the rational function goes to zero. It follows that∫ ∞

−∞

dx

x4 + 1
=

π√
2
.

Therefore ∫ ∞
0

dx

x4 + 1
=

π

2
√

2
.

3. We calculate ∫ ∞
−∞

dx

x6 + 1

and divide by 2. We integrate over the standard contour γ1 from −R to
R and the semicircle of radius R centred at 0 in the upper half plane,
γ2. The integrand is

f(z) =
1

z6 + 1
.

This has isolated singularities at the zeroes of z6 + 1. This is the same
as the sixth roots of −1, which is the same as the twelfth roots of unity,
which are not sixth roots of unity. So the singularities of f(z) in the
upper half plane are located at

eiπ/6 e3iπ/6 = eiπ/2 and e5iπ/6.

The other three isolated singularities are in the lower half plane.
We compute the residues at these three points. All three of them are
simple poles. We have

Reseiπ/6 f(z) = lim
z→eiπ/6

(z − eiπ/6)
z6 + 1

= lim
z→eiπ/4

1

6z5

=
1

6e5iπ/6

=
1

6
e−5iπ/6.
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We also have

Reseiπ/2 f(z) =
1

6e5iπ/2

=
1

6
e−5iπ/2

=
1

6
e−iπ/2,

and

Rese5iπ/6 f(z) =
1

6e25iπ/6

=
1

6
e−25iπ/6

=
1

6
e−iπ/6.

The residue theorem implies that∫
γ

dz

z6 + 1
= 2πi(Reseiπ/6 f(z) + Reseiπ/2 f(z) + Rese5iπ/6 f(z))

= 2πi

(
1

6
e−5iπ/6 +

1

6
e−iπ/2 +

1

6
e−iπ/6

)
=
πi

3

(
−
√

3

2
− i

2
− i+

√
3

2
− i

2

)
=

2π

3
.

As the improper integral ∫ ∞
−∞

dx

x6 + 1

converges, the integral over the interval [−R,R] converges to the inte-
gral we want to compute, in the usual way.
The length L of the semicircle is πR and we have to estimate the
maximum value M of |f(z)| over the semicircle

|f(z)| =
∣∣∣∣ 1

z6 + 1

∣∣∣∣
=

1

|z6 + 1|

≤ 1

R6 − 1
.
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It follows that ∣∣∣∣∫
γ2

dz

z6 + 1

∣∣∣∣ ≤ LM

≤ πR

R6 − 1
.

As this rational fraction is bottom heavy, the rational function goes to
zero, as R goes to infinity. It follows that∫ ∞

−∞

dx

x6 + 1
=

2π

3
.

Hence ∫ ∞
0

dx

x6 + 1
=
π

3
.

4. We integrate over the standard contour γ1 from −R to R and the
semicircle of radius R centred at 0 in the upper half plane, γ2. The
integrand is

f(z) =
1

z2 + 2z + 2
.

This has isolated singularities at the zeroes of z2 + 2z + 2. As this is a
real polynomial, one zero is in the upper half plane, one in the lower.
If we complete the square we want to solve

(z + 1)2 + 1 = 0 so that z = −1± i.
The singularity in the upper half plane is −1 + i.
As this is a simple zero we have

Res−1+i f(z) = lim
z→−1+i

(z + 1− i)
z2 + 2z + 1

= lim
z→−1+i

1

2(z + 1)

=
1

2i

= − i
2
.

The residue theorem implies that∫
γ

dz

z2 + 2z + 1
= 2πiRes−1+i f(z)

= 2πi · − i
2

= π.
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As the improper integral ∫ ∞
−∞

dx

x2 + 2x+ 2

converges, the integral over the interval [−R,R] converges to the inte-
gral we want to compute, in the usual way.
The length L of the semicircle is πR and we have to estimate the
maximum value M of |f(z)| over the semicircle

|f(z)| =
∣∣∣∣ 1

z2 + 2z + 1

∣∣∣∣
=

1

|z2 + 2z + 1|

≤ 1

R2 − 2R− 1
.

It follows that ∣∣∣∣∫
γ2

dz

z6 + 1

∣∣∣∣ ≤ LM

≤ πR

R2 − 2R− 1
.

As this rational fraction is bottom heavy, the rational function goes to
zero, as R goes to infinity. It follows that∫ ∞

−∞

dx

x2 + 2x+ 2
= π.

5. Let γ = γ1 +γ2 +γ3 be the contour consisting of γ1 the line segment
from 0 to R, γ2 the arc of the circle from R to Re2πi/3 and γ3 the line
segment from Re2πi/3 to 0.
If U is the intersection of the angular sector between 0 and 2π/3 and
the circle of radius R centred at the origin

U = { z ∈ C | 0 < Arg(z) < 2π/3, 0 < |z| < R }

then the boundary of U is γ.
Let

f(z) =
1

z3 + 1
.

The poles of f(z) are located at the cube roots of −1. These are the
sixth roots of unity which are not cube roots of unity:

eπi/3; e3πi/3 = eπi and e5πi/3.

Of these only the first belongs to U (assuming R > 1).
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All of these are simple singularities. We have

Reseπi/3 f(z) = lim
z→eiπ/3

z − eiπ/3

z3 + 1

= lim
z→eiπ/3

1

3z2

=
1

3e2iπ/3

=
e−2iπ/3

3
.

The residue theorem implies that∫
γ

dz

z3 + 1
= 2πiReseπi/3 f(z)

=
2πi

3
e−2iπ/3.

As

I =

∫ ∞
0

dx

x3 + 1
,

is an improper integral which converges, the integral over γ1 approaches
this integral as R goes to infinity:

lim
R→∞

∫
γ1

dz

z3 + 1
= lim

R→∞

∫ R

0

dx

x3 + 1

=

∫ ∞
0

dx

x3 + 1

= I.

We estimate the integral over γ2. The length L of γ2 is 2πR/3. The
maximum value M of |f(z)| is

|f(z)| =
∣∣∣∣ 1

z3 + 1

∣∣∣∣
=

1

|z3 + 1|

≤ 1

R3 − 1
.

It follows that ∣∣∣∣∫
γ2

dz

z3 + 1

∣∣∣∣ ≤ LM

2πR

3(R2 − 1)
.
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As this goes to zero as R goes to infinity, it follows that the integral
over γ2 goes to zero.
For the integral over γ3 we use the parameterisation

γ3(t) = (R− t)e2πi/3 where t ∈ [0, R].

We have

lim
R→∞

∫
γ3

dz

z3 + 1
= −e2πi/3 lim

R→∞

∫ R

0

dt

t3 + 1

= −e2πi/3
∫ ∞
0

dx

x3 + 1

= −e2πi/3I.

It follows that

2πi

3
e−2iπ/3 = I − e2πi/3I

= (1− e2πi/3)I.

Let

ω = e2πi/3 so that ω3 = 1.

We have ∫ ∞
0

dx

x3 + 1
= I

=
2πi

3

e−2iπ/3

1− e2πi/3

=
2πi

3

ω2

1− ω

=
2πi

3

ω3

ω − ω2

=
2πi

3

1

i
√

3

=
2π

3
√

3
.

6. We use the standard contour and we integrate

f(z) =
zeiz

(z2 + 1)(z2 + 4)
.

This has poles at ±i and ±2i. All of these are simple poles and i and
2i are the only singularities in the upper half plane.
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We have

Resi f(z) = lim
z→i

(z − i)zeiz

(z2 + 1)(z2 + 4)

= lim
z→i

zeiz

(z + i)(z2 + 4)

=
ie−1

(i+ i)(−1 + 4)

=
1

6e
.

We also have

Res2i f(z) = lim
z→2i

(z − 2i)zeiz

(z2 + 1)(z2 + 4)

= lim
z→2i

zeiz

(z2 + 1)(z + 2i)

=
2ie−2

(−3)(4i)

= − 1

6e2
.

The residue theorem implies∫
γ

ziz dz

(z2 + 1)(z2 + 4)
= 2πi (Resi f(z) + Res2i f(z))

=
πi

3

e− 1

e2
.

The improper integral ∫ ∞
−∞

xeix dx

(x2 + 1)(x2 + 4)

converges, since the absolute value of the integrand

xix

(x2 + 1)(x2 + 4)

looks like 1/x3 when x is large and the integral of 1/x3 converges.
Taking the limit as R goes to ∞ it follows that the integral over γ1 of
f(z) converges to the integral we are after.
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For the integral over γ2 we have to estimate M :

|f(z)| =
∣∣∣∣ zeiz

(z2 + 1)(z2 + 4)

∣∣∣∣
=

|zeiz|
|(z2 + 1)(z2 + 4)|

≤ R

(R2 − 1)(R2 − 4)
.

It follows that ∣∣∣∣∫
γ

zeiz dz

(z2 + 1)(z2 + 4)

∣∣∣∣ ≤ LM

≤ πR2

(R2 − 1)(R2 − 4)
,

which goes to zero as R goes to infinity.
It follows that ∫ ∞

−∞

xeix dx

(x2 + 1)(x2 + 4)
=
πi

3

e− 1

e2
.

Taking the imaginary parts gives∫ ∞
−∞

x sinx dx

(x2 + 1)(x2 + 4)
=
π

3

e− 1

e2
.

7. We integrate

f(z) =
eiz

z2 + 4z + 5

over the standard contour. The singularities of f(z) are at the zeroes
of z2 + 4z + 5. We have

z2 + 4z + 5 = (z + 2)2 + 1.

Hence the roots of z2 + 4z + 5 are at

−2± i.
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Both are simple poles and of these −2 + i is in the upper half plane.
The residue at −2 + i is

Res−2+i f(z) = lim
z→−2+i

(z + 2− i) eiz

z2 + 4z + 5

= lim
z→−2+i

eiz

(z + 2 + i)

=
e−1−2i

2i

The residue theorem implies that∫
γ

eiz dz

z2 + 4z + 5
= 2πi

e−1−2i

2i

= πe−1−2i.

As the improper integral ∫ ∞
−∞

eix dx

x2 + 4x+ 5

converges the integral over γ1 tends to this integral as we let R go
infinity.
For the integral over γ2, we have

|f(z)| =
∣∣∣∣ eiz

z2 + 4z + 5

∣∣∣∣
=

|eiz|
|z2 + 4z + 5|

≤ 1

R2 − 4R− 5
.

If follows that ∣∣∣∣∫ ∞
−∞

eiz dz

z2 + 4z + 5

∣∣∣∣ ≤ LM

≤ πR

R2 − 4R− 5
,

which goes to zero as R goes to infinity.
Hence ∫ ∞

−∞

eix dx

x2 + 4x+ 5
= πe−1−2i.
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To finish we just need to take the imaginary part of both sides. We
have

πe−1−2i =
π

e
e−2i

=
π

e
(cos 2− i sin 2).

Therefore ∫ ∞
−∞

sinx dx

x2 + 4x+ 5
= −π

e
sin 2.

8. We integrate

f(z) =
eiaz

(z2 + b2)2

over the standard contour. As the improper integral∫ ∞
−∞

eiax

(x2 + b2)2
dx

converges, we have

lim
R→∞

∫
γ1

eiaz

(z2 + b2)2
dz = lim

R→∞

∫ R

−R

eiax

(x2 + b2)2
dx

=

∫ ∞
−∞

eiax

(x2 + b2)2
dx.

For the integral over γ2 we have

|f(z)| = |eiaz|
|z2 + b2|2

≤ 1

(R2 − b2)2
.

Hence ∣∣∣∣∫
γ2

eiaz

(z2 + b2)2
dz

∣∣∣∣ ≤ LM

≤ πR

(R2 − b2)2
,

which goes to zero, as R goes to infinity.
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f(z) has isolated singularities at ±ib and only ib belongs to the upper
half plane. As this is a double pole we have

Resib f(z) = lim
z→ib

d

dz
(z − ib)2 eiaz

(z2 + b2)2

= lim
z→ib

d

dz

eiaz

(z + ib)2

= lim
z→ib

iaeiaz(z + ib)2 − 2eiaz(z + ib)

(z + ib)4

= lim
z→ib

ia(z + ib)− 2

(z + ib)3
eiaz

=
ia(2ib)− 2

(2ib)3
e−ab

= −iab+ 1

4b3
e−ab.

The residue theorem implies that∫ ∞
−∞

eiax

(x2 + b)2
dx = 2πiResib f(z)

= 2πi · −iab+ 1

4b3
e−ab

=
2π

4b3
(1 + ab)e−ab.

Taking the real part gives∫ ∞
0

cos ax

(x2 + b)2
dx =

2π

4b3
(1 + ab)e−ab.

Finally, using the fact cos ax is even we get∫ ∞
0

cos ax

(x2 + b)2
dx =

π

4b3
(1 + ab)e−ab.

9. We integrate

f(z) =
eiaz

(z2 + b2)2

over the standard contour. As the improper integral∫ ∞
−∞

eiax

(x2 + b2)2
dx
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converges, we have

lim
R→∞

∫
γ1

eiaz

(z2 + b2)2
dz = lim

R→∞

∫ R

−R

eiax

(x2 + b2)2
dx

=

∫ ∞
−∞

eiax

(x2 + b2)2
dx.

For the integral over γ2 we have

|f(z)| = |eiaz|
|z2 + b2|2

≤ 1

(R2 − b2)2
.

Hence ∣∣∣∣∫
γ2

eiaz

(z2 + b2)2
dz

∣∣∣∣ ≤ LM

≤ πR

(R2 − b2)2
,

which goes to zero, as R goes to infinity.
f(z) has isolated singularities at ±ib and only ib belongs to the upper
half plane. As this is a double pole we have

Resib f(z) = lim
z→ib

d

dz
(z − ib)2 eiaz

(z2 + b2)2

= lim
z→ib

d

dz

eiaz

(z + ib)2

= lim
z→ib

iaeiaz(z + ib)2 − 2eiaz(z + ib)

(z + ib)4

= lim
z→ib

ia(z + ib)− 2

(z + ib)3
eiaz

=
ia(2ib)− 2

(2ib)3
e−ab

= −iab+ 1

4b3
e−ab.
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The residue theorem implies that∫ ∞
−∞

eiax

(x2 + b)2
dx = 2πiResib f(z)

= 2πi · −iab+ 1

4b3
e−ab

=
2π

4b3
(1 + ab)e−ab.

Taking the real part gives∫ ∞
0

cos ax

(x2 + b)2
dx =

2π

4b3
(1 + ab)e−ab.

Finally, using the fact cos ax is even we get∫ ∞
0

cos ax

(x2 + b)2
dx =

π

4b3
(1 + ab)e−ab.

Challenge Problems: (Just for fun)

10. We are going to use the answers to 2 and 3 as a guide to how to
solve this problem. We do the usual things; integrate over the usual
contour, argue that as R goes to infinity the integral over γ1 goes to
twice the integral we want and the integral over the semircircle γ2 goes
to zero, as the absolute value of the integral is bounded above by

πR2m+1

R2n − 1
.

Putting all of this together we get∫ ∞
0

x2m

x2n + 1
dx =

1

2
2πi

n∑
i=1

Resai f(z) where f(z) =
z2m

z2n − 1
.

The hard part is to compute the sum of the residues. The singularities
of f(z) are located at the roots of z2n + 1 in the upper half plane. The
roots of z2n+1 are 2nth roots of −1. These are the 4nth roots of unity
which are not 2nth roots of unity. A 4nth root of unity is of the form

e2πik/4n = eπik/2n

where k is an integer. If this is not a 2nth root of unity we should take
k odd. To achieve this, simply replace k by 2k − 1. The singularities
in the upper half plane have argument between 0 and π. This means

1 ≤ 2k − 1 ≤ 2n.
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It follows that the isolated singularities of f(z) in the upper half plane
are

ak = eπi(2k−1)/2n where 1 ≤ k ≤ n.

All of these singularities are simple. Let us compute the residue of f(z)
at ak:

Resak f(z) = lim
z→ak

(z − ak)f(z)

= lim
z→ak

(z − ak)z2m

z2n + 1

= lim
z→ak

z2m + 2m(z − ak)z2m−1

2nz2n−1

=
a2mk

2na2n−1k

=
a2m+1−2n
k

2n

= −a
2m+1
k

2n

= −e
πi(2k−1)(2m+1)/2n

2n
.

The sum of the residues is then the sum of a geometric series

−e
πi(2m+1)/2n − eπi(2n+1)(2m+1)/2n

2n(1− eπi(2m+1)/n)
.

We have

−e
πi(2m+1)/2n − eπi(2n+1)(2m+1)/2n

2n(1− eπi(2m+1)/n)
= −eπi(2m+1)/2n 1− eπi(2n(2m+1)/2n

2n(1− eπi(2m+1)/n)

= − 1

n(e−πi(2m+1)/2n − eπi(2m+1)/2n)

=
1

2n(i sin((2m+ 1)/2n)

= − i

2n
csc((2m+ 1)/2n).
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