MODEL ANSWERS TO THE SECOND HOMEWORK

-1. f(z) is differentiable wherever p(z) and ¢(z) are holomorphic and
q(z) is non-zero. In particular f(z) is holomorphic in a punctured

neighbourhood of a, so that f(z) has an isolated singularity at a.
As

1 q(z)

flz)  p(2)
has a simple zero at a it follows that f(z) has a simple pole.

We calculate the residue there. There are two very similar ways to
proceed:

(2= a)p(2)
Res, f(2) llg(ll )
P+ - ()
z—a q’(z)
_ pla)
¢(a)

To get from the first line to the second line we used L’Hopital’s rule.
Or we could proceed a little bit more directly:

Res, f(z) = lim (z—a)p(z)
zZ—ra q(Z)
= lim p(z)
z—a M
op(2)
=lm oo

_ p(a)
q'(a)

0. We use the parameterisation
z=Re”  where  0€[0,7]

In this case

|dz| = Rdf.
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On the other hand,

iz iRae'®
| =le

le
— |eiRa(Cos 0+isin6) |

— |6iRa cosf@—aRsin 0 |

— |eaiRcose| |€—aRsin9|

— efaRsinG.

So we are reduced to showing that

™ ) T
/ e—aRsmH do < —
0 Ra

which we proved on the way to proving Jordan’s Lemma.

1. Note first that
/°° 3 Sinaxd
—  dz
e T4

is not absolutely convergent. If we replace sin ax by its absolute value,
or what comes to pretty much the same thing, ignore sin az, the inte-

grand becomes

I3

xt+4
which looks like 1/x for x large, whose integral diverges.
We proceed as usual but we will need to use the Cauchy principal value.
We integrate around the usual contour and we let
z’e

1(z) = A 4+4

This has poles at the roots of z* +4. This has four roots and as before
the two in the upper half plane are e™/* and e3™/*. So the singularities
of f(z) in the upper half plane are

\/ﬁewi/4 and \/5637”'/4'

We compute the residues. Both are simple poles. We have

3 taz

23 eiaz

]‘:{es\/ieﬂ'i/4 f(Z) - z%}}ggﬁi/4 423

az
(&

= lim
z—»\/2eTi/4 4

1 : wi/4
- _eza\/ie

—a+ia

4
1
= —e
4
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Similarly

Z3ezaz

Res s5,3ri/4 f(2) =  lim
\/56 g ( ) z~)\/§e37”‘/4 423
az

= lim

2/2e3mi/a 4

_ leia\/ﬁes"i/4

—a—ia
)

4
1
= —e
4

The residue theorem implies that

z36iaz .
/724 ) dz = 27 (Res goria + ReS szumiza)

— %Z (6—a+ia + e—a—ia)
_ egm (eia i e—m)

= ¢ “micosa.

We now estimate the integral over v,. Once again this is more delicate
than usual and we need to use to Jordan’s Lemma:

/Z3€z‘az q < |236
z| <
L2 14 L2+ 4]

|R3€iaz |
= d
[ R e

R® / .

= e[ dz]
RT—4 ),
T 3

T
R —4’

which goes to zero, as R goes to infinity.
It follows that the Cauchy principal value of

00 x3€iax
i
oo T4

R 1'3 eia;t

lim ——dx = e *micosa.
R—o0 _R _2;'4 —+ 4

3

taz ‘

|dz]

<
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Taking imaginary parts we get that the Cauchy principal value of
[e’¢) 3 o
x® sin ax
—dx
/_Oo zt+4

e~ % cosa.

is

As the integrand
23 sin ax
xt+4
is even, it follows that the improper integral converges to the Cauchy

principal value:
* 23 sin ax
/ ———dx = me “cosa.
oo T4
2. We integrate around the usual contour and we let

f(z) =
This has poles at the roots of

2422 4+2=(2+1)+1.
It follows that the roots are

o0

%1

ze
2242242

-1+

So the only singularity of f(z) in the upper half plane is 1 4. As this
is a simple pole, we have

(z —1—1)ze”
Resl+i f(Z> = zl_l)lII_lH 22+ 2242

iz

. ze
= lim ——
=1tz — 141
(I —a)ett
= 5 )

The residue theorem implies that

Zelaz
% 4z = 2miResiy,
[y22+22+2 z = 2mi Res14; f(2)

(1 4 Z'>€71+i
(1+4)e’

3

(14+1i)(cos1+isinl).

30l
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We now estimate the integral over 5. Once again this is more delicate
than usual and we need to use to Jordan’s Lemma:
‘Zemz

22+22+2 ‘ /|22+22+2||Z|

'Laz|
= lde
AW—R

R az
“R-R-2 /Je 1

TR
R2—R-2

<

which goes to zero, as R goes to infinity.
It follows that the Cauchy principal value of

00 xeia:p
T da
/oo x2+2x+2

T(1+4)(cos1 +isin1).
€

is
Taking imaginary parts we get that the Cauchy principal value of
/ * zsinzdr
o T2+ 2242

E(cos 1 +sinl).
e

18

3. (a) We integrate
f(z) = e”
around the closed contour
Y=+t +73

where v, goes from 0 to R along the real axis, 7, goes along the arc
of the circle of radius R centred at the origin from R to Re™™/* and 3
goes along the straight line connecting Re’™* to the origin.

f(2) is entire. Cauchy’s theorem implies that

/6”2 dz = 0.
.
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For the integral along v; we have

-2 R 22
/ e” dz = / e dx
Y 0

R
:/ cos(z?) + isin(z?) dz
0
R R
:/ cos(x2)dx+i/ sin(z?) d.
0 0

For the integral along —~5; we use the parameterisation

z=¢™%  where t€[0,R)]

R
_/6122 dz:e”/‘l/ ez‘(e“f/‘*t)2 dt
V3 0
. R 2
:ewr/4/ t dt
0
. R 2
26”/4/ e " dt
0
_ / ®at + / - dt
V2 Jo .

Taking real and imaginary parts of the equation

/e” dz——/e” dz—/e” dz
71 Y3 Y2

R .
cos(x dx = / /e” dz
| v
R
sin(z®) de = — dt—Im/ i qz.
/ Al

(b) Now we estimate the integral along v,. We have

/eizzdz g/\ei‘22||dz|
72 72

For the integral on the RHS we use the parameterisation

z=Re”  where 0€[0,7/4].

gives

In this case

|dz| = Rd6.
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On the other hand,

|€'iZ2 | _ |€iR262i6 |
— ‘eiR2(cos 260+ sin 20) |
— |eiR2 cos 20— R? sin 20|

_ ‘eiR2 cos 20 | ’efRQ sin 29|

_ o R?sin20

Making the change of variable ¢ = 26 are reduced to bounding

4
/ ] |dz| = /W/ e 152 g
V2 0

w/2 5
:/ G_R sin ¢ d¢
0

1 i 7R2 : ¢
— sing 4
2/0 ‘ ¢

™

< 559
2R?
which goes to zero as R goes to infinity.

(c) Letting R go to oo we get

/0 " os(a?) di = YT

2V2
/Ooosin(:cQ) dor = VT

2v2
4. We integrate around the unit circle and we use the parameterisation
, d
z=7(0) = e so that S —
12
Note that
09 —if
sinf = & ,6
27
i
2%
We get
/2” de 7{ 1 4
. z
o H+4sind =1 82(5 +4/2i(2 — 1/2))

1
b
|z

=191z + 227 — 2
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The integrand

1
222 + biz — 2

has isolated singularities at the roots
222 + biz — 2.

As this is a quadratic polynomial, we can apply the quadratic formula
to find the roots:

—5i++v/=254+16  —5i++/=9
4 - 4
—5+3

=1 .

4

—2i does not belong to the open unit disk A but —i/2 does belong to
the open unit disk A. The singularities of f(z) are simple, so that

z+1i/2
im ————
z——i/2 222 + Hiz — 2
. 1
lim -
z——i/2 4z + bi
1
3

Res_;/2 f(2) =

The residue theorem implies that

(/‘2’r do j{ 1
- . . 4 — . A 9 o dZ
o O+4sind 2|21 082 + 222 — 2

1

— i —

m3i
_27r

3

We can check this using the results in lecture 5, example 5.1. First of
all sin and cos are related by a phase shift:

cos® = sin(0 + 7/2).
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Since we are integrating sin over 27 it follows that

/27r de _/271' de
o H+dsing J; 5+4sin(f+ 7/2)

a8
B /0 5+ 4cosb
N U
T4 /0 5/4+ cos 6
1 2m
4./(5/4)2 -1
127
= 13/_4
2
==
5.
2T cos® 36 d6
/0 5—4cos20°
We integrate around the unit circle and we use the parameterisation
z=~(0) =" so that dg = %
iz
Note that
emif | o—mif
cosmb =
2
2™+ sz
T2
We get

/27r cos’30df f 1/4(2% 4+ 1/2°)? ds
o 5—dcos20  Jo1iz(5—4/2(z% + 1/2%))

. 6 1 2
= 3]{ (2" +1) dz.
4 |z]=1 25(224 — 572 -+ 2)

The integrand
(26 + 1)2
25(224 — 522+ 2)

has isolated singularities at the roots of

2°(22* — 522 +2).
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Either z = 0 or we have a root of 2z* — 522 + 2. As this is a quadratic
polynomial in 22, we can apply the quadratic formula to find the roots:

5+£v25-16 5+49
4 4
_ 5+3

4
If z belongs to the open unit disk then so does z2. 2 does not belong

to the open unit disk A but 1/2 does belong to the open unit disk A.
Thus f(z) has three singularities inside the unit disk, one at 0 and two

at :I:\/Li.
The singularities of f(z) at j:\/ii are simple so that
: (25 +1)?
R = 1
es1/va f(2) Z_>11r;1\/§ 5z4(22% — 52?2 4 2) 4 25(823 — 10z)

I o Vil
2—1/v2 220(422 — 5)
((1/2)° +1)?

1/4(2 —5)
_
-2
and
, (2% +1)2
R = 1
esoaf(2) = I 52+ 2) 1 585 —107)

(26 + 1)2
im ———————

2s—1/v3 226(42% — 5)
((1/2)° +1)°

1/4(2 —5)

27

16
The pole at 0 is a pole of order 5. So we want the coefficient of z* in
the power series expansion of

(Z6 + 1)2
224 — 52242
This is the same as the coefficient of z* in the power series expansion

of
1 1 1

24522 +2 21—5/222+ 24
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This coefficient is
HETE S
2 4 8
The residue theorem implies that
/27r cos®’30df 3}{ (20 +1)? ds
o D—dcos20 4 J,25(22 =522 +2)

- 27m'3' (Resl/\/g f(2) +Res_y, 5 f(2) + Resg f(z))

4
= 27?2'3. (—2—7 + E)
4 8 8
3
=<
6. We integrate around the unit circle and we use the parameterisation
z=7(0) = e so that dg = %

We get

/7r dé B j{ 1 &
o (a+cosh)? smiz(a+1/2(2 4+ 1/2))?
4
= —,f i dZ
] |z|=1 (2@2 + 22 + 1)2

47{ z d
= — z
1 |z|=1 (QCLZ + 22 + 1)2

The integrand
z

(2az + 22+ 1)?

has isolated singularities at the roots of
242z +1=(24+a)*+ (1 —a?).
Therefore the singularities are at

—a++vVa?-—1.

The negative square root surely does not belong to A but the positive
one does:

a=—a+Vva2—-1¢€A.
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As « is a double pole of f(z) we have

z—«
Res, f(z) =1
ea (2 zlﬂadz<z2+2az+1 )

Z—de(Z—l-a—i—\/i))
— lim (z4a+ Va2 =1 =2z2(z+a+ Va2 —1)
fim Cratva—1)
Lrtaet Ve —1-2
L PR e 1

A(Va? — 1)

The residue theorem implies that

/’f S 1_17{ 2 =
o (a+cosf) i =1 (202 + 22 4+ 1)?

4 a
=2m -
t4(va? —1)3
B 2ma
GETR

7. As the integrand
sin* § = (sin" 6)?

is a square, it is even. Therefore

s 1 ™
/ sin?"0df = — / sin®" 6 d#
0 2 -7

1 2
= —/ sin®” 6 dé.
2 Jo

To calculate the last integral, we integrate around the unit circle and
we use the parameterisation
de

z=7(0) = e so that dz = =
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We have

27 1 1 2n
in? 0 dg = ]f e
/0 S1n o 22(22)2n z > z
1 22 -1 2n
- 22n' 1 n% ( 2n+1> dZ
Z(_ ) |z|=1 z

22 -1 2n
f(z) = (ZQTI)
has a pole of order 2n + 1 at 0 € A. To compute the residue there,
probably the most efficient way to proceed is to use the binomial the-
orem to expand the numerator. Since we want the coefficient of 1/z
for the Laurent expansion of f(z), we want the coefficient of 22" in the
binomial expansion of the numerator (2% — 1)?". This is is the same as
the coefficient of ™ in the binomial expansion of (z — 1)?", which is

()

The residue theorem therefore implies that

™ 1 27
/ sin®" @ df = / sin®" 6 d6
0 0
2 _ 2n
.1 f{ (22 —1) &
(_1)n 211 22n+1
2n
—2mi(—=1)"
()
1 2n
=5\
_()!
o 22n ()2

The integrand

N = N = N
(\V]
)
3
-~

Challenge Problems: (Just for fun)
8. Calculate

*  d
/ 4+—I2+b2 where @ >0,b>0,a® > 40"
—ol azx
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