
MODEL ANSWERS TO THE SECOND HOMEWORK

-1. f(z) is differentiable wherever p(z) and q(z) are holomorphic and
q(z) is non-zero. In particular f(z) is holomorphic in a punctured
neighbourhood of a, so that f(z) has an isolated singularity at a.
As

1

f(z)
=
q(z)

p(z)

has a simple zero at a it follows that f(z) has a simple pole.
We calculate the residue there. There are two very similar ways to
proceed:

Resa f(z) = lim
z→a

(z − a)p(z)

q(z)

= lim
z→a

p(z) + (z − a)p′(z)

q′(z)

=
p(a)

q′(a)
.

To get from the first line to the second line we used L’Hôpital’s rule.
Or we could proceed a little bit more directly:

Resa f(z) = lim
z→a

(z − a)p(z)

q(z)

= lim
z→a

p(z)
q(z)
z−a

= lim
z→a

p(z)
q(z)−q(a)
z−a

=
p(a)

q′(a)
.

0. We use the parameterisation

z = Reiθ where θ ∈ [0, π].

In this case

|dz| = Rdθ.
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On the other hand,

|eiz| = |eiRaeiθ |
= |eiRa(cos θ+i sin θ)|
= |eiRa cos θ−aR sin θ|
= |eaiR cos θ||e−aR sin θ|
= e−aR sin θ.

So we are reduced to showing that∫ π

0

e−aR sin θ dθ <
π

Ra
,

which we proved on the way to proving Jordan’s Lemma.
1. Note first that ∫ ∞

−∞

x3 sin ax

x4 + 4
dx,

is not absolutely convergent. If we replace sin ax by its absolute value,
or what comes to pretty much the same thing, ignore sin ax, the inte-
grand becomes

x3

x4 + 4
which looks like 1/x for x large, whose integral diverges.
We proceed as usual but we will need to use the Cauchy principal value.
We integrate around the usual contour and we let

f(z) =
z3eiaz

z4 + 4
.

This has poles at the roots of z4 + 4. This has four roots and as before
the two in the upper half plane are eπi/4 and e3πi/4. So the singularities
of f(z) in the upper half plane are

√
2eπi/4 and

√
2e3πi/4.

We compute the residues. Both are simple poles. We have

Res√2eπi/4 f(z) = lim
z→
√
2eπi/4

z3eiaz

4z3

= lim
z→
√
2eπi/4

eiaz

4

=
1

4
eia
√
2eπi/4

=
1

4
e−a+ia.
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Similarly

Res√2e3πi/4 f(z) = lim
z→
√
2e3πi/4

z3eiaz

4z3

= lim
z→
√
2e3πi/4

eiaz

4

=
1

4
eia
√
2e3πi/4

=
1

4
e−a−ia,

The residue theorem implies that∫
γ

z3eiaz

z4 + 4
dz = 2πi

(
Res√2eπi/4 + Res√2e3πi/4

)
=
πi

2

(
e−a+ia + e−a−ia

)
=
e−aπi

2

(
eia + e−ia

)
= e−aπi cos a.

We now estimate the integral over γ2. Once again this is more delicate
than usual and we need to use to Jordan’s Lemma:∣∣∣∣∫

γ

z3eiaz

z4 + 4
dz

∣∣∣∣ ≤ ∫
γ

|z3eiaz|
|z4 + 4|

|dz|

=

∫
γ

|R3eiaz|
R4 − 4

|dz|

=
R3

R4 − 4

∫
γ

|eiaz| |dz|

<
πR3

R4 − 4
,

which goes to zero, as R goes to infinity.
It follows that the Cauchy principal value of∫ ∞

−∞

x3eiax

x4 + 4
dx,

is

lim
R→∞

∫ R

−R

x3eiax

x4 + 4
dx = e−aπi cos a.
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Taking imaginary parts we get that the Cauchy principal value of∫ ∞
−∞

x3 sin ax

x4 + 4
dx,

is

e−aπ cos a.

As the integrand
x3 sin ax

x4 + 4
is even, it follows that the improper integral converges to the Cauchy
principal value: ∫ ∞

−∞

x3 sin ax

x4 + 4
dx = πe−a cos a.

2. We integrate around the usual contour and we let

f(z) =
zeiz

z2 + 2z + 2
.

This has poles at the roots of

z2 + 2z + 2 = (z + 1)2 + 1.

It follows that the roots are

−1± i.

So the only singularity of f(z) in the upper half plane is 1 + i. As this
is a simple pole, we have

Res1+i f(z) = lim
z→1+i

(z − 1− i)zeiz

z2 + 2z + 2

= lim
z→1+i

zeiz

z − 1 + i

=
(1− i)e−1+i

2
.

The residue theorem implies that∫
γ

zeiaz

z2 + 2z + 2
dz = 2πiRes1+i f(z)

= π(1 + i)e−1+i

=
π

e
(1 + i)ei

=
π

e
(1 + i)(cos 1 + i sin 1).
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We now estimate the integral over γ2. Once again this is more delicate
than usual and we need to use to Jordan’s Lemma:∣∣∣∣∫

γ

zeiz

z2 + 2z + 2
dz

∣∣∣∣ ≤ ∫
γ

|zeiaz|
|z2 + 2z + 2|

|dz|

=

∫
γ

|Reiaz|
R2 −R− 2

|dz|

=
R

R2 −R− 2

∫
γ

|eiaz| |dz|

<
πR

R2 −R− 2
,

which goes to zero, as R goes to infinity.
It follows that the Cauchy principal value of∫ ∞

−∞

xeiax

x2 + 2x+ 2
dx,

is
π

e
(1 + i)(cos 1 + i sin 1).

Taking imaginary parts we get that the Cauchy principal value of∫ ∞
−∞

x sinxdx

x2 + 2x+ 2

is
π

e
(cos 1 + sin 1).

3. (a) We integrate

f(z) = eiz
2

around the closed contour

γ = γ1 + γ2 + γ3

where γ1 goes from 0 to R along the real axis, γ2 goes along the arc
of the circle of radius R centred at the origin from R to Reiπ/4 and γ3
goes along the straight line connecting Reiπ/4 to the origin.
f(z) is entire. Cauchy’s theorem implies that∫

γ

eiz
2

dz = 0.
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For the integral along γ1 we have∫
γ1

eiz
2

dz =

∫ R

0

eix
2

dx

=

∫ R

0

cos(x2) + i sin(x2) dx

=

∫ R

0

cos(x2) dx+ i

∫ R

0

sin(x2) dx.

For the integral along −γ3 we use the parameterisation

z = eiπ/4t where t ∈ [0, R].

−
∫
γ3

eiz
2

dz = eiπ/4
∫ R

0

ei(e
iπ/4t)2 dt

= eiπ/4
∫ R

0

ei(e
iπt2 dt

= eiπ/4
∫ R

0

e−t
2

dt

=
1√
2

∫ R

0

e−t
2

dt+
i√
2

∫ R

0

e−t
2

dt.

Taking real and imaginary parts of the equation∫
γ1

eiz
2

dz = −
∫
γ3

eiz
2

dz −
∫
γ2

eiz
2

dz

gives ∫ R

0

cos(x2) dx =
1√
2

∫ R

0

e−t
2

dt− Re

∫
γ2

eiz
2

dz∫ R

0

sin(x2) dx =
1√
2

∫ R

0

e−t
2

dt− Im

∫
γ2

eiz
2

dz.

(b) Now we estimate the integral along γ2. We have∣∣∣∣∫
γ2

eiz
2

dz

∣∣∣∣ ≤ ∫
γ2

|eiz2| |dz|

For the integral on the RHS we use the parameterisation

z = Reiθ where θ ∈ [0, π/4].

In this case

|dz| = Rdθ.
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On the other hand,

|eiz2 | = |eiR2e2iθ |

= |eiR2(cos 2θ+i sin 2θ)|

= |eiR2 cos 2θ−R2 sin 2θ|

= |eiR2 cos 2θ||e−R2 sin 2θ|

= e−R
2 sin 2θ.

Making the change of variable φ = 2θ are reduced to bounding∫
γ2

|eiz2| |dz| =
∫ π/4

0

e−R
2 sin 2θ dθ

=

∫ π/2

0

e−R
2 sinφ dφ

=
1

2

∫ π

0

e−R
2 sinφ dφ

<
π

2R2
,

which goes to zero as R goes to infinity.
(c) Letting R go to ∞ we get∫ ∞

0

cos(x2) dx =

√
π

2
√

2∫ ∞
0

sin(x2) dx =

√
π

2
√

2
.

4. We integrate around the unit circle and we use the parameterisation

z = γ(θ) = eiθ so that dθ =
dz

iz
.

Note that

sin θ =
eiθ − e−iθ

2i

=
z − 1

z

2i
.

We get ∫ 2π

0

dθ

5 + 4 sin θ
=

∮
|z|=1

1

iz(5 + 4/2i(z − 1/z))
dz

=

∮
|z|=1

1

5iz + 2z2 − 2
dz.
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The integrand

1

2z2 + 5iz − 2

has isolated singularities at the roots

2z2 + 5iz − 2.

As this is a quadratic polynomial, we can apply the quadratic formula
to find the roots:

−5i±
√
−25 + 16

4
=
−5i±

√
−9

4

= i
−5± 3

4
.

−2i does not belong to the open unit disk ∆ but −i/2 does belong to
the open unit disk ∆. The singularities of f(z) are simple, so that

Res−i/2 f(z) = lim
z→−i/2

z + i/2

2z2 + 5iz − 2

= lim
z→−i/2

1

4z + 5i

=
1

3i
.

The residue theorem implies that

∫ 2π

0

dθ

5 + 4 sin θ
=

∮
|z|=1

1

5iz + 2z2 − 2
dz

= 2πi
1

3i

=
2π

3
.

We can check this using the results in lecture 5, example 5.1. First of
all sin and cos are related by a phase shift:

cos θ = sin(θ + π/2).
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Since we are integrating sin over 2π it follows that∫ 2π

0

dθ

5 + 4 sin θ
=

∫ 2π

0

dθ

5 + 4 sin(θ + π/2)

=

∫ 2π

0

dθ

5 + 4 cos θ

=
1

4

∫ 2π

0

dθ

5/4 + cos θ

=
1

4

2π√
(5/4)2 − 1

=
1

4

2π

3/4

=
2π

3
.

5. ∫ 2π

0

cos2 3θ dθ

5− 4 cos 2θ
.

We integrate around the unit circle and we use the parameterisation

z = γ(θ) = eiθ so that dθ =
dz

iz
.

Note that

cosmθ =
emiθ + e−miθ

2

=
zm + 1

zm

2
.

We get ∫ 2π

0

cos2 3θ dθ

5− 4 cos 2θ
=

∮
|z|=1

1/4(z3 + 1/z3)2

iz(5− 4/2(z2 + 1/z2))
dz

=
i

4

∮
|z|=1

(z6 + 1)2

z5(2z4 − 5z2 + 2)
dz.

The integrand

(z6 + 1)2

z5(2z4 − 5z2 + 2)

has isolated singularities at the roots of

z5(2z4 − 5z2 + 2).
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Either z = 0 or we have a root of 2z4 − 5z2 + 2. As this is a quadratic
polynomial in z2, we can apply the quadratic formula to find the roots:

5±
√

25− 16

4
=

5±
√

9

4

=
5± 3

4
.

If z belongs to the open unit disk then so does z2. 2 does not belong
to the open unit disk ∆ but 1/2 does belong to the open unit disk ∆.
Thus f(z) has three singularities inside the unit disk, one at 0 and two
at ± 1√

2
.

The singularities of f(z) at ± 1√
2

are simple so that

Res1/
√
2 f(z) = lim

z→1/
√
2

(z6 + 1)2

5z4(2z4 − 5z2 + 2) + z5(8z3 − 10z)

= lim
z→1/

√
2

(z6 + 1)2

2z6(4z2 − 5)

=
((1/2)3 + 1)2

1/4(2− 5)

= −27

16
.

and

Res−1/
√
2 f(z) = lim

z→−1/
√
2

(z6 + 1)2

5z4(2z4 − 5z2 + 2) + z5(8z3 − 10z)

= lim
z→−1/

√
2

(z6 + 1)2

2z6(4z2 − 5)

=
((1/2)3 + 1)2

1/4(2− 5)

= −27

16
.

The pole at 0 is a pole of order 5. So we want the coefficient of z4 in
the power series expansion of

(z6 + 1)2

2z4 − 5z2 + 2
.

This is the same as the coefficient of z4 in the power series expansion
of

1

2z4 − 5z2 + 2
=

1

2

1

1− 5/2z2 + z4
.
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This coefficient is
1

2

(
−1 +

25

4

)
=

21

8
.

The residue theorem implies that∫ 2π

0

cos2 3θ dθ

5− 4 cos 2θ
=
i

4

∮
|z|=1

(z6 + 1)2

z5(2z4 − 5z2 + 2)
dz

= 2πi
i

4

(
Res1/

√
2 f(z) + Res−1/

√
2 f(z) + Res0 f(z)

)
= 2πi

i

4

(
−27

8
+

21

8

)
=

3π

8
.

6. We integrate around the unit circle and we use the parameterisation

z = γ(θ) = eiθ so that dθ =
dz

iz
.

We get ∫ π

0

dθ

(a+ cos θ)2
=

∮
|z|=1

1

iz(a+ 1/2(z + 1/z))2
dz

=
4

i

∮
|z|=1

z

(2az + z2 + 1)2
dz

=
4

i

∮
|z|=1

z

(2az + z2 + 1)2
dz

The integrand
z

(2az + z2 + 1)2

has isolated singularities at the roots of

z2 + 2az + 1 = (z + a)2 + (1− a2).

Therefore the singularities are at

−a±
√
a2 − 1.

The negative square root surely does not belong to ∆ but the positive
one does:

α = −a+
√
a2 − 1 ∈ ∆.
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As α is a double pole of f(z) we have

Resα f(z) = lim
z→α

d

dz

(
(z − α)2z

(z2 + 2az + 1)2

)
= lim

z→α

d

dz

(
z

(z + a+
√
a2 − 1)2

)
= lim

z→α

(z + a+
√
a2 − 1)2 − 2z(z + a+

√
a2 − 1)

(z + a+
√
a2 − 1)4

= lim
z→α

z + a+
√
a2 − 1− 2z

(z + a+
√
a2 − 1)3

= lim
z→α

a+
√
a2 − 1− z

(z + a+
√
a2 − 1)3

=
2a

(2
√
a2 − 1)3

=
a

4(
√
a2 − 1)3

.

The residue theorem implies that∫ π

0

dθ

(a+ cos θ)2
=

4

i

∮
|z|=1

z

(2az + z2 + 1)2
dz

= 2πi
4

i

a

4(
√
a2 − 1)3

=
2πa

(
√
a2 − 1)3

.

7. As the integrand

sin2n θ = (sinn θ)2

is a square, it is even. Therefore∫ π

0

sin2n θ dθ =
1

2

∫ π

−π
sin2n θ dθ

=
1

2

∫ 2π

0

sin2n θ dθ.

To calculate the last integral, we integrate around the unit circle and
we use the parameterisation

z = γ(θ) = eiθ so that dz =
dθ

iz
.
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We have ∫ 2π

0

sin2n θ dθ =

∮
|z|=1

1

iz(2i)2n

(
z − 1

z

)2n

dz

=
1

22ni(−1)n

∮
|z|=1

(z2 − 1)2n

z2n+1
dz

The integrand

f(z) =
(z2 − 1)2n

z2n+1

has a pole of order 2n + 1 at 0 ∈ ∆. To compute the residue there,
probably the most efficient way to proceed is to use the binomial the-
orem to expand the numerator. Since we want the coefficient of 1/z
for the Laurent expansion of f(z), we want the coefficient of z2n in the
binomial expansion of the numerator (z2− 1)2n. This is is the same as
the coefficient of xn in the binomial expansion of (x− 1)2n, which is

(−1)n
(

2n

n

)
.

The residue theorem therefore implies that∫ π

0

sin2n θ dθ =
1

2

∫ 2π

0

sin2n θ dθ

=
1

2

1

22ni(−1)n

∮
|z|=1

(z2 − 1)2n

z2n+1
dz

=
1

2

1

22ni(−1)n
2πi(−1)n

(
2n

n

)
=

1

22n
π

(
2n

n

)
=

(2n)!

22n(n!)2
π.

Challenge Problems: (Just for fun)

8. Calculate∫ ∞
−∞

dx

x4 + ax2 + b2
where a > 0, b > 0, a2 ≥ 4b2.
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