MODEL ANSWERS TO THE SECOND HOMEWORK

-1. $f(z)$ is differentiable wherever $p(z)$ and $q(z)$ are holomorphic and $q(z)$ is non-zero. In particular $f(z)$ is holomorphic in a punctured neighbourhood of a, so that $f(z)$ has an isolated singularity at a.
As

$$
\frac{1}{f(z)}=\frac{q(z)}{p(z)}
$$

has a simple zero at a it follows that $f(z)$ has a simple pole.
We calculate the residue there. There are two very similar ways to proceed:

$$
\begin{aligned}
\operatorname{Res}_{a} f(z) & =\lim _{z \rightarrow a} \frac{(z-a) p(z)}{q(z)} \\
& =\lim _{z \rightarrow a} \frac{p(z)+(z-a) p^{\prime}(z)}{q^{\prime}(z)} \\
& =\frac{p(a)}{q^{\prime}(a)}
\end{aligned}
$$

To get from the first line to the second line we used L'Hôpital's rule. Or we could proceed a little bit more directly:

$$
\begin{aligned}
\operatorname{Res}_{a} f(z) & =\lim _{z \rightarrow a} \frac{(z-a) p(z)}{q(z)} \\
& =\lim _{z \rightarrow a} \frac{p(z)}{\frac{q(z)}{z-a}} \\
& =\lim _{z \rightarrow a} \frac{p(z)}{\frac{q(z)-q(a)}{z-a}} \\
& =\frac{p(a)}{q^{\prime}(a)} .
\end{aligned}
$$

0 . We use the parameterisation

$$
z=R e^{i \theta} \quad \text { where } \quad \theta \in[0, \pi] .
$$

In this case

$$
|\mathrm{d} z|=R \mathrm{~d} \theta
$$

On the other hand,

$$
\begin{aligned}
\left|e^{i z}\right| & =\left|e^{i R a e^{i \theta}}\right| \\
& =\left|e^{i R a(\cos \theta+i \sin \theta)}\right| \\
& =\left|e^{i R a \cos \theta-a R \sin \theta}\right| \\
& =\left|e^{a i R \cos \theta}\right|\left|e^{-a R \sin \theta}\right| \\
& =e^{-a R \sin \theta}
\end{aligned}
$$

So we are reduced to showing that

$$
\int_{0}^{\pi} e^{-a R \sin \theta} \mathrm{~d} \theta<\frac{\pi}{R a}
$$

which we proved on the way to proving Jordan's Lemma.

1. Note first that

$$
\int_{-\infty}^{\infty} \frac{x^{3} \sin a x}{x^{4}+4} \mathrm{~d} x
$$

is not absolutely convergent. If we replace $\sin a x$ by its absolute value, or what comes to pretty much the same thing, ignore sin $a x$, the integrand becomes

$$
\frac{x^{3}}{x^{4}+4}
$$

which looks like $1 / x$ for x large, whose integral diverges.
We proceed as usual but we will need to use the Cauchy principal value. We integrate around the usual contour and we let

$$
f(z)=\frac{z^{3} e^{i a z}}{z^{4}+4}
$$

This has poles at the roots of $z^{4}+4$. This has four roots and as before the two in the upper half plane are $e^{\pi i / 4}$ and $e^{3 \pi i / 4}$. So the singularities of $f(z)$ in the upper half plane are

$$
\sqrt{2} e^{\pi i / 4} \quad \text { and } \quad \sqrt{2} e^{3 \pi i / 4}
$$

We compute the residues. Both are simple poles. We have

$$
\begin{aligned}
& \operatorname{Res}_{\sqrt{2} e^{\pi i / 4}} f(z)=\lim _{z \rightarrow \sqrt{2} e^{\pi i / 4}} \frac{z^{3} e^{i a z}}{4 z^{3}} \\
&=\lim _{z \rightarrow \sqrt{2} e^{\pi i / 4}} \frac{e^{i a z}}{4} \\
&=\frac{1}{4} e^{i a \sqrt{2} e^{\pi i / 4}} \\
&=\frac{1}{4} e^{-a+i a} . \\
& 2
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\operatorname{Res}_{\sqrt{2} e^{3 \pi i / 4}} f(z) & =\lim _{z \rightarrow \sqrt{2} e^{3 \pi i / 4}} \frac{z^{3} e^{i a z}}{4 z^{3}} \\
& =\lim _{z \rightarrow \sqrt{2} e^{3 \pi i / 4}} \frac{e^{i a z}}{4} \\
& =\frac{1}{4} e^{i a \sqrt{2} e^{3 \pi i / 4}} \\
& =\frac{1}{4} e^{-a-i a}
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{\gamma} \frac{z^{3} e^{i a z}}{z^{4}+4} \mathrm{~d} z & =2 \pi i\left(\operatorname{Res}_{\sqrt{2} e^{\pi i / 4}}+\operatorname{Res}_{\sqrt{2} e^{3 \pi i / 4}}\right) \\
& =\frac{\pi i}{2}\left(e^{-a+i a}+e^{-a-i a}\right) \\
& =\frac{e^{-a} \pi i}{2}\left(e^{i a}+e^{-i a}\right) \\
& =e^{-a} \pi i \cos a
\end{aligned}
$$

We now estimate the integral over γ_{2}. Once again this is more delicate than usual and we need to use to Jordan's Lemma:

$$
\begin{aligned}
\left|\int_{\gamma} \frac{z^{3} e^{i a z}}{z^{4}+4} \mathrm{~d} z\right| & \leq \int_{\gamma} \frac{\left|z^{3} e^{i a z}\right|}{\left|z^{4}+4\right|}|\mathrm{d} z| \\
& =\int_{\gamma} \frac{\left|R^{3} e^{i a z}\right|}{R^{4}-4}|\mathrm{~d} z| \\
& =\frac{R^{3}}{R^{4}-4} \int_{\gamma}\left|e^{i a z}\right||\mathrm{d} z| \\
& <\frac{\pi R^{3}}{R^{4}-4},
\end{aligned}
$$

which goes to zero, as R goes to infinity.
It follows that the Cauchy principal value of

$$
\int_{-\infty}^{\infty} \frac{x^{3} e^{i a x}}{x^{4}+4} \mathrm{~d} x
$$

is

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{x^{3} e^{i a x}}{x^{4}+4} \mathrm{~d} x=e^{-a} \pi i \cos a
$$

Taking imaginary parts we get that the Cauchy principal value of

$$
\int_{-\infty}^{\infty} \frac{x^{3} \sin a x}{x^{4}+4} \mathrm{~d} x
$$

is

$$
e^{-a} \pi \cos a
$$

As the integrand

$$
\frac{x^{3} \sin a x}{x^{4}+4}
$$

is even, it follows that the improper integral converges to the Cauchy principal value:

$$
\int_{-\infty}^{\infty} \frac{x^{3} \sin a x}{x^{4}+4} \mathrm{~d} x=\pi e^{-a} \cos a
$$

2. We integrate around the usual contour and we let

$$
f(z)=\frac{z e^{i z}}{z^{2}+2 z+2}
$$

This has poles at the roots of

$$
z^{2}+2 z+2=(z+1)^{2}+1
$$

It follows that the roots are

$$
-1 \pm i
$$

So the only singularity of $f(z)$ in the upper half plane is $1+i$. As this is a simple pole, we have

$$
\begin{aligned}
\operatorname{Res}_{1+i} f(z) & =\lim _{z \rightarrow 1+i} \frac{(z-1-i) z e^{i z}}{z^{2}+2 z+2} \\
& =\lim _{z \rightarrow 1+i} \frac{z e^{i z}}{z-1+i} \\
& =\frac{(1-i) e^{-1+i}}{2}
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{\gamma} \frac{z e^{i a z}}{z^{2}+2 z+2} \mathrm{~d} z & =2 \pi i \operatorname{Res}_{1+i} f(z) \\
& =\pi(1+i) e^{-1+i} \\
& =\frac{\pi}{e}(1+i) e^{i} \\
& =\frac{\pi}{e}(1+i)(\cos 1+i \sin 1)
\end{aligned}
$$

We now estimate the integral over γ_{2}. Once again this is more delicate than usual and we need to use to Jordan's Lemma:

$$
\begin{aligned}
\left|\int_{\gamma} \frac{z e^{i z}}{z^{2}+2 z+2} \mathrm{~d} z\right| & \leq \int_{\gamma} \frac{\left|z e^{i a z}\right|}{\left|z^{2}+2 z+2\right|}|\mathrm{d} z| \\
& =\int_{\gamma} \frac{\left|R e^{i a z}\right|}{R^{2}-R-2}|\mathrm{~d} z| \\
& =\frac{R}{R^{2}-R-2} \int_{\gamma}\left|e^{i a z}\right||\mathrm{d} z| \\
& <\frac{\pi R}{R^{2}-R-2},
\end{aligned}
$$

which goes to zero, as R goes to infinity.
It follows that the Cauchy principal value of

$$
\int_{-\infty}^{\infty} \frac{x e^{i a x}}{x^{2}+2 x+2} \mathrm{~d} x
$$

is

$$
\frac{\pi}{e}(1+i)(\cos 1+i \sin 1)
$$

Taking imaginary parts we get that the Cauchy principal value of

$$
\int_{-\infty}^{\infty} \frac{x \sin x \mathrm{~d} x}{x^{2}+2 x+2}
$$

is

$$
\frac{\pi}{e}(\cos 1+\sin 1)
$$

3. (a) We integrate

$$
f(z)=e^{i z^{2}}
$$

around the closed contour

$$
\gamma=\gamma_{1}+\gamma_{2}+\gamma_{3}
$$

where γ_{1} goes from 0 to R along the real axis, γ_{2} goes along the arc of the circle of radius R centred at the origin from R to $R e^{i \pi / 4}$ and γ_{3} goes along the straight line connecting $R e^{i \pi / 4}$ to the origin.
$f(z)$ is entire. Cauchy's theorem implies that

$$
\int_{\gamma} e^{i z^{2}} \mathrm{~d} z=0 .
$$

For the integral along γ_{1} we have

$$
\begin{aligned}
\int_{\gamma_{1}} e^{i z^{2}} \mathrm{~d} z & =\int_{0}^{R} e^{i x^{2}} \mathrm{~d} x \\
& =\int_{0}^{R} \cos \left(x^{2}\right)+i \sin \left(x^{2}\right) \mathrm{d} x \\
& =\int_{0}^{R} \cos \left(x^{2}\right) \mathrm{d} x+i \int_{0}^{R} \sin \left(x^{2}\right) \mathrm{d} x
\end{aligned}
$$

For the integral along $-\gamma_{3}$ we use the parameterisation

$$
\begin{gathered}
z=e^{i \pi / 4} t \quad \text { where } \quad t \in[0, R] \\
-\int_{\gamma_{3}} e^{i z^{2}} \mathrm{~d} z=e^{i \pi / 4} \int_{0}^{R} e^{i\left(e^{i \pi / 4} t\right)^{2}} \mathrm{~d} t \\
\\
=e^{i \pi / 4} \int_{0}^{R} e^{i\left(e^{i \pi} t^{2}\right.} \mathrm{d} t \\
\\
=e^{i \pi / 4} \int_{0}^{R} e^{-t^{2}} \mathrm{~d} t \\
\\
=\frac{1}{\sqrt{2}} \int_{0}^{R} e^{-t^{2}} \mathrm{~d} t+\frac{i}{\sqrt{2}} \int_{0}^{R} e^{-t^{2}} \mathrm{~d} t
\end{gathered}
$$

Taking real and imaginary parts of the equation

$$
\int_{\gamma_{1}} e^{i z^{2}} \mathrm{~d} z=-\int_{\gamma_{3}} e^{i z^{2}} \mathrm{~d} z-\int_{\gamma_{2}} e^{i z^{2}} \mathrm{~d} z
$$

gives

$$
\begin{aligned}
\int_{0}^{R} \cos \left(x^{2}\right) \mathrm{d} x & =\frac{1}{\sqrt{2}} \int_{0}^{R} e^{-t^{2}} \mathrm{~d} t-\operatorname{Re} \int_{\gamma_{2}} e^{i z^{2}} \mathrm{~d} z \\
\int_{0}^{R} \sin \left(x^{2}\right) \mathrm{d} x & =\frac{1}{\sqrt{2}} \int_{0}^{R} e^{-t^{2}} \mathrm{~d} t-\operatorname{Im} \int_{\gamma_{2}} e^{i z^{2}} \mathrm{~d} z
\end{aligned}
$$

(b) Now we estimate the integral along γ_{2}. We have

$$
\left|\int_{\gamma_{2}} e^{i z^{2}} \mathrm{~d} z\right| \leq \int_{\gamma_{2}}\left|e^{i z^{2}}\right||\mathrm{d} z|
$$

For the integral on the RHS we use the parameterisation

$$
z=R e^{i \theta} \quad \text { where } \quad \theta \in[0, \pi / 4] .
$$

In this case

$$
|\mathrm{d} z|=R \mathrm{~d} \theta \text {. }
$$

On the other hand,

$$
\begin{aligned}
\left|e^{i z^{2}}\right| & =\left|e^{i R^{2} e^{2 i \theta}}\right| \\
& =\left|e^{i R^{2}(\cos 2 \theta+i \sin 2 \theta)}\right| \\
& =\left|e^{i R^{2} \cos 2 \theta-R^{2} \sin 2 \theta}\right| \\
& =\left|e^{i R^{2} \cos 2 \theta}\right|\left|e^{-R^{2} \sin 2 \theta}\right| \\
& =e^{-R^{2} \sin 2 \theta} .
\end{aligned}
$$

Making the change of variable $\phi=2 \theta$ are reduced to bounding

$$
\begin{aligned}
\int_{\gamma_{2}}\left|e^{i z^{2}}\right||\mathrm{d} z| & =\int_{0}^{\pi / 4} e^{-R^{2} \sin 2 \theta} \mathrm{~d} \theta \\
& =\int_{0}^{\pi / 2} e^{-R^{2} \sin \phi} \mathrm{~d} \phi \\
& =\frac{1}{2} \int_{0}^{\pi} e^{-R^{2} \sin \phi} \mathrm{~d} \phi \\
& <\frac{\pi}{2 R^{2}}
\end{aligned}
$$

which goes to zero as R goes to infinity.
(c) Letting R go to ∞ we get

$$
\begin{aligned}
& \int_{0}^{\infty} \cos \left(x^{2}\right) \mathrm{d} x=\frac{\sqrt{\pi}}{2 \sqrt{2}} \\
& \int_{0}^{\infty} \sin \left(x^{2}\right) \mathrm{d} x=\frac{\sqrt{\pi}}{2 \sqrt{2}} .
\end{aligned}
$$

4. We integrate around the unit circle and we use the parameterisation

$$
z=\gamma(\theta)=e^{i \theta} \quad \text { so that } \quad \mathrm{d} \theta=\frac{\mathrm{d} z}{i z} .
$$

Note that

$$
\begin{aligned}
\sin \theta & =\frac{e^{i \theta}-e^{-i \theta}}{2 i} \\
& =\frac{z-\frac{1}{z}}{2 i} .
\end{aligned}
$$

We get

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{5+4 \sin \theta} & =\oint_{|z|=1} \frac{1}{i z(5+4 / 2 i(z-1 / z))} \mathrm{d} z \\
& =\oint_{|z|=1} \frac{1}{5 i z+2 z^{2}-2} \mathrm{~d} z
\end{aligned}
$$

The integrand

$$
\frac{1}{2 z^{2}+5 i z-2}
$$

has isolated singularities at the roots

$$
2 z^{2}+5 i z-2
$$

As this is a quadratic polynomial, we can apply the quadratic formula to find the roots:

$$
\begin{aligned}
\frac{-5 i \pm \sqrt{-25+16}}{4} & =\frac{-5 i \pm \sqrt{-9}}{4} \\
& =i \frac{-5 \pm 3}{4}
\end{aligned}
$$

$-2 i$ does not belong to the open unit disk Δ but $-i / 2$ does belong to the open unit disk Δ. The singularities of $f(z)$ are simple, so that

$$
\begin{aligned}
\operatorname{Res}_{-i / 2} f(z) & =\lim _{z \rightarrow-i / 2} \frac{z+i / 2}{2 z^{2}+5 i z-2} \\
& =\lim _{z \rightarrow-i / 2} \frac{1}{4 z+5 i} \\
& =\frac{1}{3 i} .
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{5+4 \sin \theta} & =\oint_{|z|=1} \frac{1}{5 i z+2 z^{2}-2} \mathrm{~d} z \\
& =2 \pi i \frac{1}{3 i} \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

We can check this using the results in lecture 5, example 5.1. First of all \sin and cos are related by a phase shift:

$$
\cos \theta=\sin _{8}(\theta+\pi / 2)
$$

Since we are integrating sin over 2π it follows that

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{5+4 \sin \theta} & =\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{5+4 \sin (\theta+\pi / 2)} \\
& =\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{5+4 \cos \theta} \\
& =\frac{1}{4} \int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{5 / 4+\cos \theta} \\
& =\frac{1}{4} \frac{2 \pi}{\sqrt{(5 / 4)^{2}-1}} \\
& =\frac{1}{4} \frac{2 \pi}{3 / 4} \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

5.

$$
\int_{0}^{2 \pi} \frac{\cos ^{2} 3 \theta \mathrm{~d} \theta}{5-4 \cos 2 \theta}
$$

We integrate around the unit circle and we use the parameterisation

$$
z=\gamma(\theta)=e^{i \theta} \quad \text { so that } \quad \mathrm{d} \theta=\frac{\mathrm{d} z}{i z} .
$$

Note that

$$
\begin{aligned}
\cos m \theta & =\frac{e^{m i \theta}+e^{-m i \theta}}{2} \\
& =\frac{z^{m}+\frac{1}{z^{m}}}{2}
\end{aligned}
$$

We get

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{\cos ^{2} 3 \theta \mathrm{~d} \theta}{5-4 \cos 2 \theta} & =\oint_{|z|=1} \frac{1 / 4\left(z^{3}+1 / z^{3}\right)^{2}}{i z\left(5-4 / 2\left(z^{2}+1 / z^{2}\right)\right)} \mathrm{d} z \\
& =\frac{i}{4} \oint_{|z|=1} \frac{\left(z^{6}+1\right)^{2}}{z^{5}\left(2 z^{4}-5 z^{2}+2\right)} \mathrm{d} z
\end{aligned}
$$

The integrand

$$
\frac{\left(z^{6}+1\right)^{2}}{z^{5}\left(2 z^{4}-5 z^{2}+2\right)}
$$

has isolated singularities at the roots of

$$
z^{5}\left(2 z^{4}-5 z^{2}+2\right)
$$

Either $z=0$ or we have a root of $2 z^{4}-5 z^{2}+2$. As this is a quadratic polynomial in z^{2}, we can apply the quadratic formula to find the roots:

$$
\begin{aligned}
\frac{5 \pm \sqrt{25-16}}{4} & =\frac{5 \pm \sqrt{9}}{4} \\
& =\frac{5 \pm 3}{4}
\end{aligned}
$$

If z belongs to the open unit disk then so does z^{2}. 2 does not belong to the open unit disk Δ but $1 / 2$ does belong to the open unit disk Δ. Thus $f(z)$ has three singularities inside the unit disk, one at 0 and two at $\pm \frac{1}{\sqrt{2}}$.
The singularities of $f(z)$ at $\pm \frac{1}{\sqrt{2}}$ are simple so that

$$
\begin{aligned}
\operatorname{Res}_{1 / \sqrt{2}} f(z) & =\lim _{z \rightarrow 1 / \sqrt{2}} \frac{\left(z^{6}+1\right)^{2}}{5 z^{4}\left(2 z^{4}-5 z^{2}+2\right)+z^{5}\left(8 z^{3}-10 z\right)} \\
& =\lim _{z \rightarrow 1 / \sqrt{2}} \frac{\left(z^{6}+1\right)^{2}}{2 z^{6}\left(4 z^{2}-5\right)} \\
& =\frac{\left((1 / 2)^{3}+1\right)^{2}}{1 / 4(2-5)} \\
& =-\frac{27}{16}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Res}_{-1 / \sqrt{2}} f(z) & =\lim _{z \rightarrow-1 / \sqrt{2}} \frac{\left(z^{6}+1\right)^{2}}{5 z^{4}\left(2 z^{4}-5 z^{2}+2\right)+z^{5}\left(8 z^{3}-10 z\right)} \\
& =\lim _{z \rightarrow-1 / \sqrt{2}} \frac{\left(z^{6}+1\right)^{2}}{2 z^{6}\left(4 z^{2}-5\right)} \\
& =\frac{\left((1 / 2)^{3}+1\right)^{2}}{1 / 4(2-5)} \\
& =-\frac{27}{16} .
\end{aligned}
$$

The pole at 0 is a pole of order 5 . So we want the coefficient of z^{4} in the power series expansion of

$$
\frac{\left(z^{6}+1\right)^{2}}{2 z^{4}-5 z^{2}+2}
$$

This is the same as the coefficient of z^{4} in the power series expansion of

$$
\frac{1}{2 z^{4}-5 z^{2}+2}=\frac{1}{2} \frac{1}{10} 1-5 / 2 z^{2}+z^{4} .
$$

This coefficient is

$$
\frac{1}{2}\left(-1+\frac{25}{4}\right)=\frac{21}{8}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{\cos ^{2} 3 \theta \mathrm{~d} \theta}{5-4 \cos 2 \theta} & =\frac{i}{4} \oint_{|z|=1} \frac{\left(z^{6}+1\right)^{2}}{z^{5}\left(2 z^{4}-5 z^{2}+2\right)} \mathrm{d} z \\
& =2 \pi i \frac{i}{4}\left(\operatorname{Res}_{1 / \sqrt{2}} f(z)+\operatorname{Res}_{-1 / \sqrt{2}} f(z)+\operatorname{Res}_{0} f(z)\right) \\
& =2 \pi i \frac{i}{4}\left(-\frac{27}{8}+\frac{21}{8}\right) \\
& =\frac{3 \pi}{8}
\end{aligned}
$$

6. We integrate around the unit circle and we use the parameterisation

$$
z=\gamma(\theta)=e^{i \theta} \quad \text { so that } \quad \mathrm{d} \theta=\frac{\mathrm{d} z}{i z} .
$$

We get

$$
\begin{aligned}
\int_{0}^{\pi} \frac{\mathrm{d} \theta}{(a+\cos \theta)^{2}} & =\oint_{|z|=1} \frac{1}{i z(a+1 / 2(z+1 / z))^{2}} \mathrm{~d} z \\
& =\frac{4}{i} \oint_{|z|=1} \frac{z}{\left(2 a z+z^{2}+1\right)^{2}} \mathrm{~d} z \\
& =\frac{4}{i} \oint_{|z|=1} \frac{z}{\left(2 a z+z^{2}+1\right)^{2}} \mathrm{~d} z
\end{aligned}
$$

The integrand

$$
\frac{z}{\left(2 a z+z^{2}+1\right)^{2}}
$$

has isolated singularities at the roots of

$$
z^{2}+2 a z+1=(z+a)^{2}+\left(1-a^{2}\right)
$$

Therefore the singularities are at

$$
-a \pm \sqrt{a^{2}-1}
$$

The negative square root surely does not belong to Δ but the positive one does:

$$
\alpha=-a+\sqrt{a^{2}-1} \in \Delta .
$$

As α is a double pole of $f(z)$ we have

$$
\begin{aligned}
\operatorname{Res}_{\alpha} f(z) & =\lim _{z \rightarrow \alpha} \frac{\mathrm{~d}}{\mathrm{~d} z}\left(\frac{(z-\alpha)^{2} z}{\left(z^{2}+2 a z+1\right)^{2}}\right) \\
& =\lim _{z \rightarrow \alpha} \frac{\mathrm{~d}}{\mathrm{~d} z}\left(\frac{z}{\left(z+a+\sqrt{a^{2}-1}\right)^{2}}\right) \\
& =\lim _{z \rightarrow \alpha} \frac{\left(z+a+\sqrt{a^{2}-1}\right)^{2}-2 z\left(z+a+\sqrt{a^{2}-1}\right)}{\left(z+a+\sqrt{a^{2}-1}\right)^{4}} \\
& =\lim _{z \rightarrow \alpha} \frac{z+a+\sqrt{a^{2}-1}-2 z}{\left(z+a+\sqrt{a^{2}-1}\right)^{3}} \\
& =\lim _{z \rightarrow \alpha} \frac{a+\sqrt{a^{2}-1}-z}{\left(z+a+\sqrt{a^{2}-1}\right)^{3}} \\
& =\frac{2 a}{\left(2 \sqrt{a^{2}-1}\right)^{3}} \\
& =\frac{a}{4\left(\sqrt{a^{2}-1}\right)^{3}} .
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{0}^{\pi} \frac{\mathrm{d} \theta}{(a+\cos \theta)^{2}} & =\frac{4}{i} \oint_{|z|=1} \frac{z}{\left(2 a z+z^{2}+1\right)^{2}} \mathrm{~d} z \\
& =2 \pi i \frac{4}{i} \frac{a}{4\left(\sqrt{a^{2}-1}\right)^{3}} \\
& =\frac{2 \pi a}{\left(\sqrt{a^{2}-1}\right)^{3}}
\end{aligned}
$$

7. As the integrand

$$
\sin ^{2 n} \theta=\left(\sin ^{n} \theta\right)^{2}
$$

is a square, it is even. Therefore

$$
\begin{aligned}
\int_{0}^{\pi} \sin ^{2 n} \theta \mathrm{~d} \theta & =\frac{1}{2} \int_{-\pi}^{\pi} \sin ^{2 n} \theta \mathrm{~d} \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi} \sin ^{2 n} \theta \mathrm{~d} \theta
\end{aligned}
$$

To calculate the last integral, we integrate around the unit circle and we use the parameterisation

$$
z=\gamma(\theta)=e^{i \theta} \quad \begin{aligned}
& \text { so that } \\
& 12
\end{aligned} \quad \mathrm{~d} z=\frac{\mathrm{d} \theta}{i z}
$$

We have

$$
\begin{aligned}
\int_{0}^{2 \pi} \sin ^{2 n} \theta \mathrm{~d} \theta & =\oint_{|z|=1} \frac{1}{i z(2 i)^{2 n}}\left(z-\frac{1}{z}\right)^{2 n} \mathrm{~d} z \\
& =\frac{1}{2^{2 n} i(-1)^{n}} \oint_{|z|=1} \frac{\left(z^{2}-1\right)^{2 n}}{z^{2 n+1}} \mathrm{~d} z
\end{aligned}
$$

The integrand

$$
f(z)=\frac{\left(z^{2}-1\right)^{2 n}}{z^{2 n+1}}
$$

has a pole of order $2 n+1$ at $0 \in \Delta$. To compute the residue there, probably the most efficient way to proceed is to use the binomial theorem to expand the numerator. Since we want the coefficient of $1 / z$ for the Laurent expansion of $f(z)$, we want the coefficient of $z^{2 n}$ in the binomial expansion of the numerator $\left(z^{2}-1\right)^{2 n}$. This is is the same as the coefficient of x^{n} in the binomial expansion of $(x-1)^{2 n}$, which is

$$
(-1)^{n}\binom{2 n}{n}
$$

The residue theorem therefore implies that

$$
\begin{aligned}
\int_{0}^{\pi} \sin ^{2 n} \theta \mathrm{~d} \theta & =\frac{1}{2} \int_{0}^{2 \pi} \sin ^{2 n} \theta \mathrm{~d} \theta \\
& =\frac{1}{2} \frac{1}{2^{2 n} i(-1)^{n}} \oint_{|z|=1} \frac{\left(z^{2}-1\right)^{2 n}}{z^{2 n+1}} \mathrm{~d} z \\
& =\frac{1}{2} \frac{1}{2^{2 n} i(-1)^{n}} 2 \pi i(-1)^{n}\binom{2 n}{n} \\
& =\frac{1}{2^{2 n}} \pi\binom{2 n}{n} \\
& =\frac{(2 n)!}{2^{2 n}(n!)^{2}} \pi .
\end{aligned}
$$

Challenge Problems: (Just for fun)
8. Calculate

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{x^{4}+a x^{2}+b^{2}} \quad \text { where } \quad a>0, b>0, a^{2} \geq 4 b^{2}
$$

