MODEL ANSWERS TO THE THIRD HOMEWORK

1. Let

$$
f(z)=\frac{e^{i a z}-e^{i b z}}{z^{2}}
$$

This has a pole at 0 and so we integrate around the indented contour

$$
\gamma=\gamma_{-}+\gamma_{0}+\gamma_{+}+\gamma_{2}
$$

where γ_{-}goes from $-R$ to $-\rho, \gamma_{0}$ goes along the semicircle of radius ρ from $-\rho$ to ρ in the upper half plane, γ_{+}goes from ρ to R and γ_{2} goes back to $-R$ along the semicircle of radius R in the upper half plane. As $f(z)$ is holomorphic on

$$
U=\{z \in \mathbb{C}|\rho<|z|<R\} \cap \mathbb{H}
$$

whose boundary is γ, Cauchy's theorem implies that

$$
\int_{\gamma} \frac{e^{i a z}-e^{i b z}}{z^{2}} \mathrm{~d} z=0
$$

We estimate the integral of $f(z)$ on γ_{2}. For the maximum value M we have

$$
\begin{aligned}
\left|\frac{e^{i a z}-e^{i b z}}{z^{2}}\right| & =\frac{\left|e^{i a z}-e^{i b z}\right|}{\left|z^{2}\right|} \\
& \leq \frac{2}{R^{2}}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{e^{i a z}-e^{i b z}}{z^{2}} \mathrm{~d} z\right| & \leq L M \\
& \leq \frac{\pi R}{R^{2}} \\
& \leq \frac{\pi}{R}
\end{aligned}
$$

which goes to zero as R goes to infinity.
Note that $f(z)$ has a simple pole at 0 , since

$$
e^{i a z}-e^{i b z}=i(a-b) z+\ldots
$$

has a simple zero. We can also use this to compute the residue:

$$
\operatorname{Res}_{0} f(z)=i(a-b)
$$

It follows that

$$
\begin{aligned}
\lim _{\rho \rightarrow 0} \int_{\gamma_{0}} \frac{e^{i a z}-e^{i b z}}{z^{2}} \mathrm{~d} z & =-\pi i i(a-b) \\
& =\pi(a-b)
\end{aligned}
$$

If we let R to ∞ and ρ go to zero then the integral over γ_{-}and γ_{+} approaches the Cauchy principal value of

$$
\int_{-\infty}^{\infty} \frac{\cos (a x)-\cos (b x)}{x^{2}} \mathrm{~d} x .
$$

It follows that the Cauchy principal value of the integral above is $\pi(b-$ $a)$. Taking real parts this implies that the Cauchy principal value of the integral

$$
\int_{-\infty}^{\infty} \frac{\cos (a x)-\cos (b x)}{x^{2}} \mathrm{~d} x
$$

is also $\pi(a-b)$. As the integrand

$$
\frac{\cos (a x)-\cos (b x)}{x^{2}}
$$

is even it follows

$$
\int_{0}^{\infty} \frac{\cos (a x)-\cos (b x)}{x^{2}} \mathrm{~d} x=\frac{\pi}{2}(b-a) .
$$

If we put $a=0$ and $b=2$ then we get

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x & =\frac{1}{2} \int_{0}^{\infty} \frac{1-\cos (2 x)}{x^{2}} \mathrm{~d} x \\
& =\frac{1}{2} \frac{\pi}{2}(2-0) \\
& =\frac{\pi}{2}
\end{aligned}
$$

2. Let

$$
f(z)=\frac{1}{\sqrt{z}\left(z^{2}+1\right)}
$$

We have to choose a branch of the logarithm to make sense of $f(z)$.
(i) We use the same branch of the logarithm as in lecture 7. We cut the complex plane along the negative imaginary axis:

$$
V=\mathbb{C} \backslash\{i y \mid y \leq 0\}
$$

We then choose a branch of the logarithm

$$
\log z=\ln |z|+i \arg z \quad \text { where } \quad \arg z \in(-\pi / 2,3 \pi / 2)
$$

We use this to define

$$
\begin{gathered}
\sqrt{z}=e^{\log z / 2} \\
2
\end{gathered}
$$

This makes \sqrt{z} a holomorphic function on V.
We integrate along the same contour as in question 1. $f(z)$ has one isolated singularity as i. This is a simple pole and the residue is:

$$
\begin{aligned}
\operatorname{Res}_{i} f(z) & =\lim _{z \rightarrow i} \frac{z-i}{\sqrt{z}\left(z^{2}+1\right)} \\
& =\lim _{z \rightarrow i} \frac{1}{\sqrt{z}(z+i)} \\
& =\frac{1}{2 i \sqrt{i}} \\
& =\frac{1}{2 i e^{\pi i / 4}} \\
& =\frac{1}{2 i} e^{-\pi i / 4}
\end{aligned}
$$

The residue theorem gives

$$
\begin{aligned}
\int_{\gamma} \frac{\mathrm{d} z}{\sqrt{z}\left(z^{2}+1\right)} & =2 \pi i \operatorname{Res}_{i} f(z) \\
& =\pi e^{-\pi i / 4}
\end{aligned}
$$

We estimate the integral of $f(z)$ on γ_{2}. For the maximum value M we have

$$
\begin{aligned}
\left|\frac{1}{\sqrt{z}\left(z^{2}+1\right)}\right| & =\frac{1}{\sqrt{z}\left(z^{2}+1\right) \mid} \\
& \leq \frac{1}{R^{1 / 2}\left(R^{2}-1\right)} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{\mathrm{~d} z}{\sqrt{z}\left(z^{2}+1\right)}\right| & \leq L M \\
& \leq \frac{\pi R}{R^{1 / 2}\left(R^{2}-1\right)} \\
& =\frac{\pi R^{1 / 2}}{R^{2}-1}
\end{aligned}
$$

which goes to zero as R goes to infinity.

Now we compute what happens over γ_{0} as ρ goes to zero. We estimate the maximum value M of $|f(z)|$ over γ_{0} :

$$
\begin{aligned}
\left|\frac{1}{\sqrt{z}\left(z^{2}+1\right)}\right| & =\frac{1}{\sqrt{z}\left(z^{2}+1\right) \mid} \\
& \leq \frac{1}{\rho^{1 / 2}\left(1-\rho^{2}\right)}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{\mathrm{~d} z}{\sqrt{z}\left(z^{2}+1\right)}\right| & \leq L M \\
& \leq \frac{\pi \rho}{\rho^{1 / 2}\left(1-\rho^{2}\right)} \\
& =\frac{\pi \rho^{1 / 2}}{1-\rho^{2}}
\end{aligned}
$$

which goes to zero as ρ goes to zero.
The integral over γ_{+}is equal to

$$
\int_{\gamma_{+}} \frac{\mathrm{d} z}{\sqrt{z}\left(z^{2}+1\right)}=\int_{\rho}^{R} \frac{\mathrm{~d} x}{\sqrt{x}\left(x^{2}+1\right)}
$$

which goes to the value of the improper integral I we are trying to compute, as ρ goes to zero and R to infinity.
Finally, for the integral over γ_{-}we use the parametrisation

$$
z=-x \quad \text { where } \quad x \in[\rho, R] .
$$

This traverses γ_{-}in the wrong direction.

$$
\int_{\gamma_{-}} \frac{\mathrm{d} z}{\sqrt{z}\left(z^{2}+1\right)}=-i \int_{\rho}^{R} \frac{\mathrm{~d} x}{\sqrt{x}\left(x^{2}+1\right)}
$$

Note that the minus sign represents three minus signs; one as $\mathrm{d} z=$ $-\mathrm{d} x$, one for the fact that we traverse γ_{-}in the wrong direction and one to move i from the denominator to the numerator. If we Let R go to infinity and ρ go to zero then we get

$$
(1-i) I=\pi e^{-\pi i / 4}
$$

But then

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{\sqrt{x}\left(x^{2}+1\right)}=\frac{\pi}{\sqrt{2}}
$$

(ii) We use the same branch of the logarithm as in lecture 8 . We cut out the non-negative real axis.

$$
V=\mathbb{C} \backslash \underset{4}{\{x \mid x \geq 0\}} .
$$

We are going to make a choice of $\log z$ with a cut along the positive real axis:

$$
\log z=\ln |z|+i \arg z \quad \text { where } \quad \arg z \in(0,2 \pi) .
$$

We also use the same contour as the one used in lecture 8 .
$f(z)$ has isolated singularities at $\pm i$. They are both simple poles. We already computed the residue at i,

$$
\operatorname{Res}_{i} f(z)=\frac{1}{2 i} e^{-\pi i / 4}
$$

For the residue at $-i$ we have

$$
\begin{aligned}
\operatorname{Res}_{-i} f(z) & =\lim _{z \rightarrow-i} \frac{z+i}{\sqrt{z}\left(z^{2}+1\right)} \\
& =\lim _{z \rightarrow-i} \frac{1}{\sqrt{z}(z-i)} \\
& =\frac{1}{-2 i \sqrt{-i}} \\
& =-\frac{1}{2 i e^{-\pi i / 4}} \\
& =-\frac{1}{2 i} e^{\pi i / 4}
\end{aligned}
$$

The residue theorem gives

$$
\begin{aligned}
\int_{\gamma} \frac{\mathrm{d} z}{\sqrt{z}\left(z^{2}+1\right)} & =2 \pi i\left(\operatorname{Res}_{i} f(z)+\operatorname{Res}_{-i} f(z)\right) \\
& =\pi\left(e^{-\pi i / 4}+e^{\pi i / 4}\right) \\
& =\pi \sqrt{2}
\end{aligned}
$$

The integral over γ_{2} still goes to zero, since the upper bound we established in (i) is still valid and the length L doubled. Similarly the integral over γ_{ρ} goes to zero. The integral over γ_{+}is the same as in (i):

$$
\int_{\gamma_{+}} \frac{\mathrm{d} z}{\sqrt{z}\left(z^{2}+1\right)}=\int_{\rho}^{R} \frac{\mathrm{~d} x}{\sqrt{x}\left(x^{2}+1\right)}
$$

which goes to the value of the improper integral I we are trying to compute, as ρ goes to zero and R to infinity.
Finally, for the integral over γ_{-}we use the parametrisation

$$
z=x \quad \text { where } \quad x \in[\rho, R] .
$$

This traverses γ_{-}in the wrong direction.

$$
\int_{\gamma_{-}} \frac{\mathrm{d} z}{\sqrt{z}\left(z^{2}+1\right)}=\int_{5}^{R} \frac{\mathrm{~d} x}{\sqrt{x}\left(x^{2}+1\right)}
$$

Note that the plus sign represents two minus signs; one going in the wrong direction and one for the fact that $\sqrt{z}=-\sqrt{x}$ just below the cut.
If we let R go to infinity and ρ go to zero then we get

$$
2 I=\pi \sqrt{2} .
$$

But then

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{\sqrt{x}\left(x^{2}+1\right)}=\frac{\pi}{\sqrt{2}}
$$

3. Let

$$
f(z)=\frac{\log z}{\left(z^{2}+1\right)(z+1)}
$$

where $\log z$ is the same branch of the logarithm as in 2 (ii). We integrate this around the keyhole contour of 2 (ii).
$f(z)$ has isolated singularities at $\pm i$ and -1 , which are all simple. We compute the residues. We have

$$
\begin{aligned}
\operatorname{Res}_{i} f(z) & =\lim _{z \rightarrow i} \frac{(z-i) \log z}{\left(z^{2}+1\right)(z+1)} \\
& =\lim _{z \rightarrow i} \frac{\log z}{(z+i)(z+1)} \\
& =\frac{\pi i / 2}{(2 i)(i+1)} \\
& =\frac{\pi(1-i)}{8}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Res}_{-i} f(z) & =\lim _{z \rightarrow-i} \frac{(z+i) \log z}{\left(z^{2}+1\right)(z+1)} \\
& =\lim _{z \rightarrow-i} \frac{\log z}{(z-i)(z+1)} \\
& =\frac{3 \pi i / 2}{(-2 i)(-i+1)} \\
& =-\frac{3 \pi(1+i)}{8}
\end{aligned}
$$

and finally

$$
\begin{aligned}
\operatorname{Res}_{-1} f(z) & =\lim _{z \rightarrow-1} \frac{(z+1) \log z}{\left(z^{2}+1\right)(z+1)} \\
& =\lim _{z \rightarrow-1} \frac{\log z}{\left(z^{2}+1\right)} \\
& =\frac{\pi i}{2} .
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{\gamma} \frac{\log z}{\left(z^{2}+1\right)(z+1)} \mathrm{d} z & =2 \pi i\left(\operatorname{Res}_{i} f(z)+\operatorname{Res}_{-i} f(z)+\operatorname{Res}_{-1} f(z)\right) \\
& =2 \pi i \frac{\pi}{8}((1-i)-3(1+i)+4 i) \\
& =-2 \pi i \frac{\pi}{4}
\end{aligned}
$$

Next we show the integrals over γ_{2} and γ_{0} go to zero. As usual we have to estimate the largest value of $|f(z)|$. Over γ_{2} we have

$$
\begin{aligned}
|f(z)| & =\frac{|\log z|}{\left|\left(z^{2}+1\right)(z+1)\right|} \\
& \leq \frac{\ln R+2 \pi}{\left(R^{2}-1\right)(R-1)} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{\log z}{\left(z^{2}+1\right)(z+1)} \mathrm{d} z\right| & \leq L M \\
& \leq \frac{2 \pi R(\ln R+2 \pi)}{\left(R^{2}-1\right)(R-1)}
\end{aligned}
$$

which goes to zero as R goes to infinity. Over γ_{0} we have

$$
\begin{aligned}
|f(z)| & =\frac{|\log z|}{\left|\left(z^{2}+1\right)(z+1)\right|} \\
& \leq \frac{2 \pi-\ln \rho}{\left(1-\rho^{2}\right)(1-\rho)}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{\log z}{\left(z^{2}+1\right)(z+1)} \mathrm{d} z\right| & \leq L M \\
& \leq \frac{2 \pi \rho(2 \pi-\ln \rho)}{\left(1-\rho^{2}\right)(1-\rho)}
\end{aligned}
$$

which goes to zero as ρ goes to zero, since $\rho \ln \rho$ goes to zero.

The integral over γ_{+}is equal to

$$
\int_{\gamma_{+}} \frac{\log z}{\left(z^{2}+1\right)(z+1)} \mathrm{d} z=\int_{\rho}^{R} \frac{\ln x}{\left(x^{2}+1\right)(x+1)} \mathrm{d} x
$$

Finally, for the integral over γ_{-}we use the same parametrisation

$$
z=x \quad \text { where } \quad x \in[\rho, R]
$$

but with a different branch of the logarithm

$$
\log z=\ln x+2 \pi i
$$

This traverses γ_{-}in the wrong direction, so we flip the sign.

$$
\int_{\gamma_{-}} \frac{\log z}{\left(z^{2}+1\right)(z+1)} \mathrm{d} z=-\int_{\rho}^{R} \frac{\ln x}{\left(x^{2}+1\right)(x+1)} \mathrm{d} x-2 \pi i \int_{\rho}^{R} \frac{1}{\left(x^{2}+1\right)(x+1)} \mathrm{d} x
$$

Letting ρ go to zero and R go to infinity we get:

$$
-2 \pi i I=-2 \pi i \frac{\pi}{4}
$$

Solving for I gives

$$
\int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)(x+1)} \mathrm{d} x=\frac{\pi}{4}
$$

4. Let

$$
f(z)=\frac{\sqrt[3]{z}}{(z+a)(z+b)}
$$

We use the same branch of the logarithm and keyhole contour as in 2 (ii). $f(z)$ has isolated singularities at $-a$ and $-b$. They are both simple poles. We calculate the residues there:

$$
\begin{aligned}
\operatorname{Res}_{-a} f(z) & =\lim _{z \rightarrow-a} \frac{\sqrt[3]{z}}{z+b} \\
& =\frac{\sqrt[3]{-a}}{-a+b} \\
& =\frac{e^{\pi i / 3} \sqrt[3]{a}}{-a+b}
\end{aligned}
$$

By symmetry we also get

$$
\operatorname{Res}_{-b} f(z)=\frac{e^{\pi i / 3} \sqrt[3]{b}}{a-b}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{\gamma} \frac{\sqrt[3]{z}}{(z+a)(z+b)} \mathrm{d} z & =2 \pi i\left(\operatorname{Res}_{-a} f(z)+\operatorname{Res}_{-b} f(z)\right) \\
& =2 \pi i\left(\frac{e^{\pi i / 3} \sqrt[3]{a}}{-a+b}+\frac{e^{\pi i / 3} \sqrt[3]{b}}{a-b}\right) \\
& =-2 \pi i e^{\pi i / 3} \frac{\sqrt[3]{a}-\sqrt[3]{b}}{a-b}
\end{aligned}
$$

Next we show the integrals over γ_{2} and γ_{0} go to zero. As usual we have to estimate the largest value of $|f(z)|$. Over γ_{2} we have

$$
\begin{aligned}
|f(z)| & =\frac{|\sqrt[3]{z}|}{|(z+a)(z+b)|} \\
& \leq \frac{R^{1 / 3}}{(R-a)(R-b)}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{\sqrt[3]{z}}{(z+a)(z+b)} \mathrm{d} z\right| & \leq L M \\
& \leq \frac{2 \pi R^{4 / 3}}{(R-a)(R-b)}
\end{aligned}
$$

which goes to zero as R goes to infinity. Over γ_{0} we have

$$
\begin{aligned}
|f(z)| & =\frac{|\sqrt[3]{z}|}{|(z+a)(z+b)|} \\
& \leq \frac{\rho^{1 / 3}}{(a-\rho)(b-\rho)}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{\sqrt[3]{z}}{(z+a)(z+b)} \mathrm{d} z\right| & \leq L M \\
& \leq \frac{2 \pi \rho^{4 / 3}}{(a-\rho)(b-\rho)}
\end{aligned}
$$

which goes to zero as ρ goes to zero.
The integral over γ_{+}is equal to

$$
\int_{\gamma_{+}} \frac{\sqrt[3]{z}}{(z+a)(z+b)} \mathrm{d} z=\int_{\rho}^{R} \frac{\sqrt[3]{x}}{(x+a)(x+b)} \mathrm{d} x
$$

Finally, for the integral over γ_{-}we use the same parametrisation

$$
z=x \quad \text { where } \quad x \in[\rho, R]
$$

but with a different branch of the cube root

$$
\sqrt[3]{z}=e^{2 \pi i / 3} \sqrt[3]{x}
$$

This traverses γ_{-}in the wrong direction, so we flip the sign.

$$
\int_{\gamma_{-}} \frac{\sqrt[3]{z}}{(z+a)(z+b)} \mathrm{d} z=-e^{2 \pi i / 3} \int_{\rho}^{R} \frac{\sqrt[3]{x}}{(x+a)(x+b)} \mathrm{d} x
$$

Letting ρ go to zero and R go to infinity we get:

$$
\left(1-e^{2 \pi i / 3}\right) I=-2 \pi i e^{\pi i / 3} \frac{\sqrt[3]{a}-\sqrt[3]{b}}{a-b}
$$

Solving for I gives

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\sqrt[3]{x} \mathrm{~d} x}{(x+a)(x+b)} & =I \\
& =-2 \pi i \frac{e^{\pi i / 3}}{1-e^{2 \pi i / 3}} \frac{\sqrt[3]{a}-\sqrt[3]{b}}{a-b} \\
& =\pi \frac{2 i}{e^{\pi i / 3}-e^{-\pi i / 3}} \frac{\sqrt[3]{a}-\sqrt[3]{b}}{a-b} \\
& =\pi \frac{1}{\sin \pi / 3} \frac{\sqrt[3]{a}-\sqrt[3]{b}}{a-b} \\
& =\frac{2 \pi}{\sqrt{3}} \frac{\sqrt[3]{a}-\sqrt[3]{b}}{a-b}
\end{aligned}
$$

5. Let

$$
f(z)=\frac{(\log z)^{2}}{z^{2}+1}
$$

We use the branch of the logarithm and the indented contour of 2 (i). $f(z)$ has isolated singularities at $\pm i$ which are both simple poles but only the singularity at i belongs to U :

$$
\begin{aligned}
\operatorname{Res}_{i} f(z) & =\lim _{z \rightarrow i} \frac{(\log z)^{2}}{2 z} \\
& =\frac{(\pi i / 2)^{2}}{2 i} \\
& =\frac{\pi^{2} i}{8} \\
& 10
\end{aligned}
$$

The residue theorem implies that

$$
\begin{aligned}
\int_{\gamma} \frac{(\log z)^{2}}{z^{2}+1} \mathrm{~d} z & =2 \pi i \operatorname{Res}_{i} f(z) \\
& =2 \pi i \frac{\pi^{2} i}{8} \\
& =-\frac{\pi^{3}}{4}
\end{aligned}
$$

Next we show the integrals over γ_{2} and γ_{0} go to zero. As usual we have to estimate the largest value of $|f(z)|$. Over γ_{2} we have

$$
\begin{aligned}
|f(z)| & =\frac{|\log z|^{2}}{\left|z^{2}+1\right|} \\
& \leq \frac{(\ln R+2 \pi)^{2}}{R^{2}-1}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{(\log z)^{2}}{z^{2}+1} \mathrm{~d} z\right| & \leq L M \\
& \leq \frac{\pi R(\ln R+2 \pi)^{2}}{R^{2}-1}
\end{aligned}
$$

which goes to zero as R goes to infinity. Over γ_{0} we have

$$
\begin{aligned}
|f(z)| & =\frac{|\log z|^{2}}{\left|z^{2}+1\right|} \\
& \leq \frac{(2 \pi-\ln \rho)^{2}}{1-\rho^{2}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\int_{\gamma_{2}} \frac{(\log z)^{2}}{z^{2}+1} \mathrm{~d} z\right| & \leq L M \\
& \leq \frac{\pi \rho(2 \pi-\ln \rho)^{2}}{1-\rho^{2}}
\end{aligned}
$$

which goes to zero as ρ goes to zero, since $\rho(\ln \rho)^{2}$ goes to zero. The integral over γ_{+}is equal to

$$
\int_{\gamma_{+}} \frac{(\log z)^{2}}{z^{2}+1} \mathrm{~d} z=\int_{\rho}^{R} \frac{(\ln x)^{2}}{x^{2}+1} \mathrm{~d} x
$$

Finally, for the integral over γ_{-}we use the parametrisation

$$
z=-x \quad \text { where } \quad x \in[\rho, R]
$$

In this case

$$
\log z=\ln x+\pi i
$$

This traverses γ_{-}in the wrong direction, so we flip the sign.

$$
\begin{aligned}
\int_{\gamma_{-}} \frac{(\log z)^{2}}{z^{2}+1} \mathrm{~d} z & =\int_{\rho}^{R} \frac{(\ln x+\pi i)^{2}}{x^{2}+1} \mathrm{~d} x \\
& =\int_{\rho}^{R} \frac{(\ln x)^{2}}{x^{2}+1} \mathrm{~d} x+2 \pi i \int_{\rho}^{R} \frac{\ln x}{x^{2}+1} \mathrm{~d} x-\pi^{2} \int_{\rho}^{R} \frac{1}{x^{2}+1} \mathrm{~d} x
\end{aligned}
$$

Letting ρ go to zero and R go to infinity we get:

$$
2 I=-\frac{\pi^{3}}{4}-2 \pi i \int_{0}^{\infty} \frac{\ln x}{x^{2}+1} \mathrm{~d} x+\pi^{2} \int_{0}^{\infty} \frac{1}{x^{2}+1} \mathrm{~d} x
$$

We saw that

$$
\int_{0}^{\infty} \frac{1}{x^{2}+1} \mathrm{~d} x=\frac{\pi}{2}
$$

in lecture 2. If we take the imaginary part of both sides, we see that

$$
\int_{0}^{\infty} \frac{\ln x}{x^{2}+1} \mathrm{~d} x=0
$$

Taking the real parts gives

$$
\int_{0}^{\infty} \frac{(\ln x)^{2}}{x^{2}+1} \mathrm{~d} x=\frac{\pi^{3}}{8}
$$

