
MODEL ANSWERS TO THE FOURTH HOMEWORK

1. Let
p(z) = z4 + 2z2 − z + 1.

Consider
p(x) = x4 + 2x2 − x+ 1.

If x ≤ 0 then p(x) > 0, since every term is non-negative and the
constant term is positive. If x ∈ [0, 1) then

1− x > 0 so that p(x) > 0.

If x ≥ 1 then

2x2 − x > 0 so that p(x) > 0.

It follows that p(z) has no real roots. Since its coefficients are real,
it roots come in complex conjugate pairs and so two roots are in the
upper half plane and two roots are in the lower half plane. Further it
suffices to prove that one quadrant has one root.
Consider what happens in the first quadrant. We go along the bound-
ary of the quarter circle in the first quadrant of radius R centred at the
origin,

γ = γ1 + γ2 + γ3,

and consider the change in the argument, when R is large.
Over γ1 we go from 0 to R so that p(z) is always real and the argument
is constant. Over γ2 the dominant term is z4 and so the change in the
argument is roughly

4
π

2
= 2π.

On γ3 we have
z = iy where y ∈ [0, R].

In this case
p(iy) = y4 − 2y2 + 1− iy

Consider p(iR). The dominant term is y4, so we are very close to R4.
The dominant term in its imaginary part is −y, which is negative. So
p(iR) is in in the fourth quadrant and the argument is close to 2π.
As we traverse γ3 where do we cross the real line? This is when y = 0.
It follows that we stay in the third and fourth quadrant along γ3. When
y is close to 0 we must approach 1 from the fourth quadrant, so that
the argument approaches 2π. So the change in the argument over γ3
is close to zero.
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Thus the total change in the argument is roughly 2π. Since the change
in the argument is a multiple of 2π, it must be exactly 2π. But then
the number of zeroes in the first quadrant is one. It follows that z4 +
2z2 − z + 1 has exactly one root in each quadrant.
2. Let

p(z) = z4 + z3 + 4z2 + 3z + 2.

Consider

p(x) = x4 + x3 + 4x2 + 3x+ 2.

If x ≥ 0 then all terms are positive and p(x) > 0. If x ∈ [−1/2, 0] then

x3 + 3x+ 2 > 0 and so p(x) > 0.

If x ∈ [−1,−1/2] then

4x2 + 2x ≥ 0 and 2 + x+ x3 ≥ 0

and so p(x) ≥ x4 > 0. If x ≤ −1 then

x4 + x3 ≥ 0 and 4x2 + 3x > 0

and so p(x) > 0.
It follows that p(z) does not have any real roots. Now we determine
how many roots it has in the first quadrant. We traverse the contour
of Question 1 and we determine the change in the argument.
p(z) is real along γ1 and there is no change in the argument. Along
γ2 the dominant term is still z4 and the change in the argument is
approximately 2π.
Over γ3 we have

p(iy) = y4 − 4y2 + 2 + i(−y3 + 3y).

The dominant term of p(iR) is R4, so that we are close to R4. The
dominant term of the imaginary part is −R3 so that p(iR) belongs to
the fourth quadrant.
We cross the real line when y3 = 3y, so that y = 0,

√
3 and −

√
3.

y ≥ 0 over γ3, so we only cross the real line once, at
√

3. When y =
√

3
the real part is

9− 12 + 2 = −1.

So we cross the real line in the left half plane. The only possibility is
that on γ3 we go from the fourth quadrant back to the third quadrant
to the second quadrant and then to the first quadrant. So the change
in the argument is roughly −2π.
Therefore the change in the argument over the whole of γ is roughly
zero, so that it is exactly zero, as it is a multiple of 2π. Therefore p(z)
has no zeroes in the first quadrant.
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As p(z) has real coefficients it roots come in complex conjugate pairs.
As it has no roots in the first quadrant it has no roots in the fourth
quadrant. As it has four roots, two roots are in the upper half plane.
Therefore it has two roots in the third quadrant and two roots in the
third quadrant.
3. Let

p(z) = z6 + 4z4 + z3 + 2z2 + z + 5.

Consider
p(x) = x6 + 4x4 + x3 + 2x2 + x+ 5.

If x > 0 then all terms are non-negative and so p(x) ≥ 5 > 0. Thus
p(z) has no real roots in the first quadrant.
We consider the change in the argument over the contour in Question
1. p(z) is real over γ1 and so there is no change in the argument.
Over γ2 the dominant term is z6 and so the change in the argument is
approximately

6
π

2
= 3π.

Over γ3, z = iy where y ∈ [0, R]. We have

p(iy) = −y6 + 4y4 − 2y2 + 5 + i(−y3 + y).

When y = R the dominant term is −y6 and so p(iR) is close to −R6.
The dominant term of the imaginary part is −y3 and so p(iR) is in the
third quadrant.
We cross the real axis when y3 = y, so when y = 0, 1 and −1. So on
γ3 we cross the real axis only when y = 1. In this case the real part is

−1 + 4− 2 + 5 > 0.

Over γ3 we start in the third quadrant and we end up the the fourth
quadrant up to i. The change in the argument from iR to i is roughly
π. After that we return to the real axis and the change in the argument
is zero.
So the total change in the argument is roughly 4π. As the change in
the argument is exactly a multiple of 2π, the change in the argument
is exactly 4π. But then there are two zeroes in the first quadrant.
4. Let

p(z) = z4 + z3 + 4z2 + αz + 3.

Let U be the intersection of the open disk of radius R with centre 0
and the left half plane. The boundary of U is

γ = γ1 + γ2,

where γ1 is the line segment from −iR to iR and γ2 is the semircircle
of radius R centred at the 0 in the left half plane.
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As we go around γ2 the dominant term is z4, so that the change in the
argument is approximately

4π.

Consider what happens as we go from −iR to iR. If we substitute
z = iy then we get

p(iy) = y4 − 4y2 + 3 + i(−y3 + αy).

Consider p(iR). The dominant term is y4 and so we are close to R4.
The dominant imaginary term is −y3 and so the imaginary part is close
to −R3, so that it is negative. So p(iR) belongs to the fourth quadrant
and the argument is close to 2π.
Now consider p(−iR). The dominant term is y4 and so we are close
to R4. The dominant imaginary term is y3 and so the imaginary part
is close to R3, so that it is positive. So p(−iR) belongs to the first
quadrant and the argument is close to 0.
How many times and where do we cross the real axis? This is when
the imaginary part is zero, that is,

y3 = αy.

There are two cases. If α ≤ 0 then this equation only has one solution,
y = 0. The real part of p(0) is 3. It follows that the change in the
argument is approximately zero, the argument goes from slightly more
than 0 to slightly less than 0.
The change in the argument over the whole of γ is then approximately
4π and so p(z) has two roots in the left half plane.
If α > 0 then we cross the real axis when y = 0,

√
α and −

√
α. So we

cross the real line three times. When y = 0 the real part is 3 and when
y = ±

√
α the real part is

α2 − 4α + 3 = (α− 2)2 − 1.

This is negative when α ∈ (1, 3).
There are three cases. If α /∈ [1, 3], that is, if either α > 3 or α < 1 then
we only cross the real axis in the right half plane and so the change in
the argument is approximately zero over γ1.
Just as before, this means there are two roots in the left half plane.
If α ∈ (1, 3) then we first cross the real axis in the left half plane. We
started in the first quadrant, so we must be going from the second to
the third quadrant. Next we cross the real axis in the right half plane,
so we must be going from the fourth quadrant to the first quadrant.
Finally we must repeat this whole process, since we start in the first
quadrant and we cross the real axis in the left half plane, again. So the
change in the argument is approximately 4π.
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In total, the change in the argument is approximately 8π, so that it is
exactly 8π and the number of zeroes in the left half plane is 4.
It remains to consider the possibility that either α = 1 or α = 3. If
α = 1 then ±i are two roots of p(z). If α = 3 then ±

√
3i are roots of

p(z). In both cases there is almost no change in the argument of p(z)
over γ1 and so the total change in the argument is again 2π and there
are two zeroes in the left half plane.
5. Let

p(z) = 2z5 + 6z − 1.

Consider p(x) = 2x5 + 6x− 1. We have

p(0) = −1 < 0 and p(1) = 2 + 6− 1 = 7 > 0,

and so p(x) has at least one root in the interval (0, 1) by the interme-
diate value theorem.
We now use Rouchés Theorem to see how many roots p(z) has in the
unit disk. Let f(z) = 6z and let h(z) = 2z5 − 1. On the unit circle we
have

|h(z)| = |2z5 − 1|
≤ |2z5|+ 1

= 3

< 6

= |6z|
= |f(z)|.

As f(z) has one zero in the unit disk, it follows that p(z) also has one
zero. But then p(z) must have one zero on the interval (0, 1).
Now consider how many zeroes p(z) has in the open disk U of radius
2. Let f(z) = 2z5 and let h(z) = 6z + 1. On the unit circle we have

|h(z)| = |6z + 1|
≤ |6z|+ 1

= 13

< 64

= |2z5|
= |f(z)|.

As f(z) has five zeroes in U , it follows that p(z) also has five zeroes.
As it has only one zero in the unit disk it follows that it has four zeroes
in the annulus

{ z ∈ C | 1 < |z| < 2 }.
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6. We use Rouchés Theorem. Let

f(z) = 3zn so that h(z) = 1 + z +
z2

2!
+ · · ·+ zm

m!
.

On the unit circle we have

|h(z)| =
∣∣∣∣1 + z +

z2

2!
+ · · ·+ zm

m!

∣∣∣∣
≤ 1 + |z|+

∣∣∣∣z22!

∣∣∣∣ + · · ·+
∣∣∣∣zmm!

∣∣∣∣
= 1 + 1 +

1

2!
+ · · ·+ 1

m!

< 1 + 1 +
1

2!
+ · · ·+ 1

m!
+ . . .

= e

< 3

= |3zn|
= |f(z)|.

As f(z) has n roots in the unit circle it follows that p(z) also has n
roots.
7. Let U be the intersection of a circle of radius R centred at the origin
and the right half plane. Let

γ = γ1 + γ2,

be the boundary of U , where γ2 is the semircircle of radius R starting
at −iR and ending at iR and γ1 is the line segment from iR to −iR.
Let

f(z) = (z − 1)nez and h(z) = λ(z + 1)n.

We check that

|h(z)| ≤ |f(z)|

on γ. First consider what happens on γ2. We have

|ez| = |ex+iy|
= |ex| · |eiy|
= |ex|
≥ 1,

as x ≥ 0 in the right half plane.
6



We have

|f(z)| = |(z − 1)nez|
= |(z − 1)n| · |ez|
≥ |(R− 1)|n

> |λ|n|(R + 1)|n

≥ |λ(z + 1)n|
= |h(z)|,

if R is sufficiently large, as |λ| < 1.
Now consider what happens over γ1. In this case z is purely imaginary
so that

|ez| = 1.

Note that
|z + 1| = |z − 1|,

since the distance of a point on the imaginary axis to −1 is the same
as its distance to 1.
We have

|f(z)| = |(z − 1)nez|
= |(z − 1)n| · |ez|
= |z − 1|n

= |z + 1|n

> λn|z − 1|n

= |λn(z + 1)n|
= |h(z)|.

Note f(z) has n zeroes in U , since 1 is a zero of order n.
Thus Rouchés theorem implies

p(z) = f(z) + h(z) = (z − 1)nez + λ(z + 1)n

has n zeroes in U , which are all in the right hand plane, Re(z) > 0.
Suppose that λ 6= 0. The derivative of p(z) is

q(z) = n(z − 1)n−1ez + (z − 1)nez + nλ(z + 1)n−1

A zero that is not a simple zero corresponds to a zero of p(z) that is
also a zero of q(z). As p(z) = 0, we have

(z − 1)nez = −λ(z + 1)n.

Thus

q(z) = −nλ(z + 1)n − λ(z − 1)(z + 1)n + nλ(z − 1)(z + 1)n−1.
7



As λ 6= 0 we have

n(z + 1)n + (z − 1)(z + 1)n − n(z − 1)(z + 1)n−1 = 0.

As we are in the right half plane, z 6= −1 and so we deduce

n(z + 1) + (z − 1)(z + 1)− n(z − 1) = 0.

Simplifying we get
z2 + 2n− 1 = 0.

If n = 0 there is nothing to prove and if n > 0 then the solutions to
this equation are purely imaginary.
Thus all n zeroes in the right half plane are simple.

Challenge Problems: (Just for fun)

8. Let U be a bounded domain and let f(z) and h(z) be two meromor-
phic functions on U that are holomorphic on ∂U . Suppose that

|h(z)| < |f(z)|
on ∂U .
(i) Give an example where f(z) and f(z)+h(z) have a different number
of zeroes on U .
(ii) What comparison can we make between f(z) and f(z) + h(z)?
Prove your assertion.
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