MODEL ANSWERS TO THE SIXTH HOMEWORK

1. Note that f is not constant by assumption. In particular $|f(z)|<M$ be the maximum principle.
We first prove this for the unit disk. We have

$$
f: \Delta \longrightarrow \Delta
$$

and f has a zero of order m at 0 . Schwarz's Lemma implies that

$$
|f(z)| \leq|z|
$$

Consider

$$
g(z)=\frac{f(z)}{z}
$$

Then

$$
g: \Delta \longrightarrow \Delta
$$

and g has a zero of order $m-1$ at 0 . It follows by induction that

$$
|f(z)| \leq|z|^{m}
$$

Further equality holds if and only if

$$
f(z)=\lambda z^{m}
$$

for some scalar λ, with $|\lambda|=1$.
Now we use the functions α and β in lecture 16 .

$$
\alpha: z \longrightarrow R z+a \quad \text { and } \quad \beta: z \longrightarrow z / M
$$

Given

$$
f: U \longrightarrow \mathbb{C} \quad \text { such that } \quad|f(z)| \leq M
$$

let

$$
g=\beta \circ f \circ \alpha: \Delta \longrightarrow \Delta .
$$

As f has a zero of order m at a, g is a holomorphic map with a zero of order m at 0 . By what we already proved

$$
|g(w)| \leq|w|^{m}
$$

Apply the inverse of β to both sides it follows that

$$
|(f \circ \alpha)(w)| \leq M^{m}|w|^{m} .
$$

Pick $z \in U$. If we put

$$
w=\frac{z-a}{R}
$$

then $w \in \Delta$ and $\alpha(w)=z$. We have

$$
\begin{aligned}
|f(z)| & =|f(\alpha(w))| \\
& \leq M^{m}|w|^{m} \\
& =\frac{M^{m}}{R^{m}}|z-a|^{m} .
\end{aligned}
$$

Now suppose we have equality at some point not equal to a. Then we have equality for g at some point other than 0 . But then

$$
g(w)=\lambda w^{m}
$$

for some λ of modulus 1 . In this case

$$
\begin{aligned}
f(z) & =g(w) \\
& =\left(M^{m} \lambda\right) w^{m} \\
& =\frac{M^{m} \lambda}{R^{m}}(z-a)^{m} .
\end{aligned}
$$

2. $\psi: \Delta \longrightarrow \Delta$ is a biholomorphic map taking a to 0 . The composition

$$
g=f \circ \psi: \Delta \longrightarrow \Delta
$$

is a holomorphic map which has a zero of order m at zero. Thus

$$
|g(w)| \leq|w|^{m}
$$

by Question 1. If $z \in \Delta$ then we may find $w \in \Delta$ such that $\psi(w)=z$. In this case

$$
\begin{aligned}
|f(z)| & =|f(\psi(w))| \\
& =|g(w)| \\
& \leq|w|^{m} \\
& =|\psi(z)|^{m} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
|f(0)| & \leq|\psi(0)|^{m} \\
& =|a|^{m} .
\end{aligned}
$$

3. Suppose that $f(z)$ is nowhere zero. Then the function

$$
p: \Delta \longrightarrow \mathbb{C}
$$

given by

$$
p(z)=\frac{1}{f(z)}
$$

is holomorphic on the closed unit disk. Applying the maximum principle to the closed unit disk we see that $|p(z)|$ achieves its maximum at a point a on the circle $|z|=1$. We have

$$
\begin{aligned}
1 & =\frac{1}{|f(0)|} \\
& =\left|\frac{1}{f(0)}\right| \\
& =|p(0)| \\
& <|p(a)| \\
& =\left|\frac{1}{f(a)}\right| \\
& =\frac{1}{|f(a)|} \\
& <1,
\end{aligned}
$$

which is not possible.
Thus $f(z)$ is zero somewhere in the unit disk.
Let

$$
g: \Delta \longrightarrow \mathbb{C}
$$

be given by

$$
g(z)=\frac{f(z)}{M}
$$

Note that

$$
|g(z)|<1 \quad \text { on } \quad|z|=1
$$

If a is a zero of f then it is also a zero of g and so by Question 2 we have

$$
\begin{aligned}
\frac{1}{M} & =\frac{|f(0)|}{M} \\
& =|g(0)| \\
& <|a| .
\end{aligned}
$$

4. One direction is clear. If $f(z)$ is a finite Blaschke product then $f(z)$ is holomorphic on the closed unit disk, so that it is certainly holomorphic on Δ and continuous on the closed unit disk and $|f(z)|=1$ on $|z|=1$, since it is a product of biholomorphic maps of the unit disk to itself. Now suppose that $f(z)$ is holomorphic on Δ, continuous on the closed unit disk and $|f(z)|=1$ on the circle $|z|=1$. Note that $f(z)$ has only finitely many zeroes since if it had infinitely many zeroes they would accumulate on $|z|=1$, contradicting the fact that $|f(z)|=1$ on $|z|=1$. Let n be the number of zeroes.

Suppose first that $n=0$, that $f(z)$ is nowhere zero on Δ. We want to show that $f(z)$ is constant. If not then $f(0)=b \in \Delta$. Consider

$$
g: \Delta \longrightarrow \mathbb{C}
$$

given by

$$
g(z)=\frac{f(z)}{b}
$$

Then $g(0)=1$ and if $|z|=1$ then we have

$$
\begin{aligned}
|g(z)| & =\frac{|f(z)|}{|b|} \\
& =\frac{1}{|b|} \\
& >1 .
\end{aligned}
$$

Question 3 implies that $g(z)$ has a zero inside Δ. But a zero of g is a zero of f, which is not possible.
It follows that $f(z)=\lambda$ is a constant. As $|f(z)|=1$ it follows that $|\lambda|=1$ so that $\lambda=e^{i \varphi}$, where $\phi \in[0,2 \pi)$.
Now suppose that $n>0$. Let $a_{1}, a_{2}, \ldots, a_{n}$ be the zeroes of $f(z)$, repeated according to multiplicity. Let

$$
B(z)=\left(\frac{z-a_{1}}{1-\bar{a}_{1} z}\right)\left(\frac{z-a_{2}}{1-\bar{a}_{2} z}\right) \ldots\left(\frac{z-a_{n}}{1-\bar{a}_{n} z}\right)
$$

and consider

$$
g: \Delta \longrightarrow \mathbb{C}
$$

given by

$$
g(z)=\frac{f(z)}{B(z)} .
$$

A priori $g(z)$ is a meromorphic function. However, since every zero of $B(z)$ is matched by a zero of $f(z)$, it follows that $g(z)$ is holomorphic. Similarly $g(z)$ has no zeroes in the unit disk. Note that $g(z)$ extends to a continuous function on the closed unit disk and that on $|z|=1$ we have

$$
\begin{aligned}
|g(z)| & =\left|\frac{f(z)}{B(z)}\right| \\
& =\frac{|f(z)|}{|B(z)|} \\
& =1
\end{aligned}
$$

As $g(z)$ is nowhere zero on the unit disk it follows that

$$
g(z)=e_{4}^{i \varphi}
$$

by what we already proved. But then $f(z)$ is a finite Blaschke product. 5. There are two ways to proceed. For the first observe that $f(z)$ is a rational function and so it is a meromorphic function. The denominator is zero at $\pm \sqrt{3} i$ and so f is a holomorphic function on Δ which extends to a continuous function on the circle $|z|=1$.
If $z=e^{i \theta}$ is a point on the unit circle then

$$
\begin{aligned}
\left|1+3\left(e^{i \theta}\right)^{2}\right| & =\left|1+3\left(e^{2 i \theta}\right)\right| \\
& =\left|1+3\left(e^{-2 i \theta}\right)\right| \\
& =\left|e^{2 i \theta}+3\right| .
\end{aligned}
$$

Thus $|f(z)|=1$ on the unit circle. It follows by Question 4 that f is a finite Blaschke product.
For the second we just find an explicit representation of $f(z)$ as a finite Blaschke product. The zeroes of $f(z)$ are at

$$
a_{1}=\frac{i}{\sqrt{3}} \quad \text { and } \quad a_{2}=-\frac{i}{\sqrt{3}} .
$$

We have

$$
\begin{aligned}
\left(\frac{z-\frac{i}{\sqrt{3}}}{1+\frac{i}{\sqrt{3}} z}\right)\left(\frac{z+\frac{i}{\sqrt{3}}}{1-\frac{i}{\sqrt{3}} z}\right) & =\left(\frac{\sqrt{3} z-i}{\sqrt{3}+i z}\right)\left(\frac{\sqrt{3} z+i}{\sqrt{3}-i z}\right) \\
& =\frac{(\sqrt{3} z-i)(\sqrt{3} z+i)}{(\sqrt{3}+i z)(\sqrt{3}-i z)} \\
& =\frac{3 z^{2}+1}{3+z^{2}} \\
& =f(z) .
\end{aligned}
$$

6. We first reduce to the unit disk and then we follow the proof of Schwarz's Lemma. Consider the function

$$
g(z)=f(3 z): \Delta \longrightarrow \Delta
$$

Then

$$
g(\pm 1 / 3)=0 \quad \text { and } \quad g(\pm i / 3)=0
$$

We want to calculate the maximum value of $|g(0)|$. Consider the finite Blaschke product

$$
B(z)=\left(\frac{z-\frac{1}{3}}{1-\frac{z}{3}}\right)\left(\frac{z+\frac{1}{3}}{1+\frac{z}{3}}\right)\left(\frac{z-\frac{i}{3}}{1+\frac{i z}{3}}\right)\left(\frac{z+\frac{i}{3}}{1-\frac{i z}{3}}\right) .
$$

Consider the function

$$
h(z)=\frac{g(z)}{B(z)}
$$

This is a meromorphic function on the unit disk. As g is zero at the zeroes of B, which are all simple, it follows that h is a holomorphic function on the unit disk. Consider a circle of radius $r \in(0,1)$. If $|z|=r$ then

$$
\begin{aligned}
|h(z)| & =\left|\frac{g(z)}{B(z)}\right| \\
& =\frac{|g(z)|}{|B(z)|} \\
& \leq \frac{1}{r} .
\end{aligned}
$$

It follows by the maximum principle that

$$
|h(z)| \leq \frac{1}{r}
$$

on the open disk of radius r. Taking the limit as r approaches one we see that $|h(z)| \leq 1$ on the unit disk. Further equality holds if and only if $h(z)=\lambda$ is a constant of modulus 1 .
In particular $|h(0)| \leq 1$ with equality if and only if $h(z)=e^{i \varphi}$. Thus

$$
\begin{aligned}
|f(0)| & =|g(0)| \\
& \leq|B(0)| \\
& =\frac{1}{3^{4}} \\
& =\frac{1}{81},
\end{aligned}
$$

with equality if and only if

$$
f(z)=e^{i \varphi} B(z / 3)
$$

7. We first consider the case $z_{0}=r>0$ and $z_{1}=-r$. Given f let

$$
g: \Delta \longrightarrow \mathbb{C}
$$

be the holomorphic map

$$
g(z)=\frac{f(z)-f(-z)}{2}
$$

We have

$$
\begin{aligned}
&|g(r)-g(-r)|=\left|\frac{f(r)-f(-r)}{2}-\frac{f(-r)-f(r)}{2}\right| \\
&=|f(r)-f(-r)| . \\
& 6
\end{aligned}
$$

Note that $g(0)=0$ and

$$
\begin{aligned}
|g(z)| & =\left|\frac{f(z)-f(-z)}{2}\right| \\
& \leq \frac{1}{2}(|f(z)|+|f(-z)|) \\
& <1
\end{aligned}
$$

If we apply Schwarz's Lemma to $g(z)$ then we get $|g(z)| \leq|z|$. Thus

$$
\begin{aligned}
|g(r)-g(-r)| & \leq|g(r)|+|g(-r)| \\
& \leq r+r \\
& =2 r .
\end{aligned}
$$

If we have equality than

$$
|f(z)| \geq|z| \quad \text { for all } \quad z \in \Delta
$$

Suppose that $f(z)$ is nowhere zero. Then

$$
p(z)=\frac{1}{f(z)}
$$

is holomorphic on Δ and

$$
|p(z)| \leq \frac{1}{|z|}
$$

Applying the maximum principle on the circle of radius r we see that

$$
|p(z)| \leq \frac{1}{r}
$$

Letting r go to one we get

$$
\mid p(z) \leq 1
$$

But then

$$
|f(z)| \geq 1
$$

which is not possible. Thus $f(z)$ has a zero somewhere. As

$$
f(z) \geq|z|
$$

we must have $f(0)=0$. Schwarz's Lemma then implies that $f(z)=\lambda z$ for some scalar λ such that $|\lambda|=1$.
Now suppose z_{0} and z_{1} are general. Let $\alpha: \Delta \longrightarrow \Delta$ be any biholomorphic map with inverse β and let $w_{i}=\alpha\left(z_{i}\right), i=0,1$. If f maximises $\left|f\left(z_{0}\right)-f\left(z_{1}\right)\right|$ then $g=f \circ \beta$ maximises

$$
\left|g\left(w_{1}\right)-g\left(w_{0}\right)\right| \underset{7}{=}\left|f\left(z_{0}\right)-f\left(z_{1}\right)\right|
$$

Consider the biholomorphic map α of Δ given by

$$
z \longrightarrow \frac{z-z_{0}}{1-\bar{z}_{0} z}
$$

α sends z_{0} to 0 . If we apply a rotation to $\alpha\left(z_{1}\right)$ we may assume that $z_{1}=x$ is a positive real.
If we use the biholomorphic map

$$
z \longrightarrow \frac{z-r}{1-r z}
$$

to move 0 to $-r$ and x to r then we have

$$
\frac{x-r}{1-r x}=r \quad \text { so that } \quad x r^{2}-2 r+x=0 .
$$

Solving for r gives

$$
\frac{2 \pm \sqrt{4-4 x^{2}}}{2 x}=\frac{1 \pm \sqrt{1-x^{2}}}{x} .
$$

We want the negative square root

$$
r=\frac{1-\sqrt{1-x^{2}}}{x}
$$

Thus the maximum value is

$$
\frac{2-2 \sqrt{1-x^{2}}}{x} \quad \text { where } \quad x=\left|\frac{z_{1}-z_{0}}{1-\bar{z}_{0} z_{1}}\right| .
$$

8. (a) There are many possibilities. One is

$$
\alpha(z)=\frac{i(z+1)}{1-z} .
$$

This sends 1 to $\infty,-1$ to 0 and i to -1 . So three points of the unit circle go to three points of the real line. As a Möbius transformation take lines and circles to line and circles, it follows that this transformation takes the unit circle to the real axis. As 0 is sent to i it follows the unit disk is carried to the upper half plane.
(b) It is convenient to state an auxiliary result that we will use a little bit later. Consider the extended real line $\mathbb{R} \cup\{\infty\}$. Given any three distinct points α, β and γ of the extended real line, so that α, β and γ are either real numbers or ∞, there is a unique map

$$
f: \mathbb{R} \cup\{\infty\} \longrightarrow \mathbb{R} \cup\{\infty\}
$$

of the extended real line to itself, of the form

$$
f(x)=\frac{a x+b}{c x+d}
$$

where a, b, c and d are real numbers and $a d-b c= \pm 1$.

We follow the same lines of proof as for the complex number. As the composition of Möbius transformations is a Möbius transformation we can prove this in stages. We want to send γ to infinity. We may assume $\gamma \neq \infty$. In this case we take $a=0, b=c=1$ and $d=-\gamma$. From now on we want to fix ∞, so we look at transformations of the form

$$
x \longrightarrow a x+b
$$

If we put $b=\alpha$ and $a=1$ then we send 0 to α. Now we want to fix both 0 and ∞. This means we have a transformation of the form

$$
x \longrightarrow a x
$$

If we put $a=\beta$ then we send 1 to β. We already proved that there is at most one Möbius transformation with complex coefficients sending 0,1 and ∞ to α, β and γ and so uniqueness is clear. If $a d-b c>0$ and we multiply top and bottom by the square root of the reciprocal we are reduced to the case $a d-b c=1$. If $a d-b c<0$ by a similar trick we are reduced to $a d-b c=-1$.
Let $f: \mathbb{H} \longrightarrow \mathbb{H}$ be a biholomorphic map. Let

$$
\beta(z)=\frac{z-1}{z+1}
$$

be the inverse of the Möbius transformation α. Then

$$
g=\beta \circ f \circ \alpha: \Delta \longrightarrow \Delta
$$

is a holomorphic map from the unit disk to the unit disk. If f_{0} is the inverse of f then $g_{0}=\beta \circ f_{0} \circ \alpha$ is the inverse of g. As g_{0} is holomorphic g is biholomorphic. It follows that g is a Möbius transformation. From the equation $g=\beta \circ f \circ \alpha$ we get $f=\alpha \circ g \circ \beta$. But then f is a Möbius transformation.
Thus every biholomorphic map of the disk to itself is a Möbius transformation. g sends to the unit circle to the unit circle. As α sends the unit circle to the real axis, it follows that f sends the real axis to the real axis.
Consider the image of 0,1 and ∞. We get three real numbers α, β and γ. There is a unique Möbius transformation which sends 0,1 and ∞ to α, β and γ. As we already constructed one Möbius transformation with this property it must be the unique one and so

$$
f(z)=\frac{a z+b}{c z+d}
$$

where a, b, c and d are real and $a b-b c= \pm 1$. Consider

$$
\begin{aligned}
f(i) & =\frac{a i+b}{c i+d} \\
& =\frac{(a i+b)(-c i+d)}{c^{2}+d^{2}} \\
& =\frac{a c+b d+i(a d-b c)}{c^{2}+d^{2}}
\end{aligned}
$$

By assumption $f(i) \in \mathbb{H}$, so that the imaginary part $a d-b c>0$. Thus $a d-b c=1$.
(c) If $f: \mathbb{H} \longrightarrow \Delta$ is a biholomorphic map of the upper half plane to the unit disk then $f \circ \alpha: \Delta \longrightarrow \Delta$ is a biholomorphic map of the upper half plane to itself, where α is the Möbius transformation introduced in (a). As birational maps of the unit disk are Möbius transformations it follows that $f \circ \alpha$ is a Möbius transformation. Precomposing with the inverse of β and using the fact that the composition of Möbius transformations is a Möbius transformation, we see that f is a Möbius transformation.
As f is biholomorphic there is a point $a \in \mathbb{H}$ mapping to 0 . Thus f must have the shape

$$
f(z)=\frac{z-a}{c z+d} .
$$

The point ∞ must map to a point $e^{i \varphi}$ of the unit circle. Thus

$$
f(z)=e^{i \varphi} \frac{z-a}{z+d}
$$

The factor $e^{i \varphi}$ obviously corresponds to a rotation. Suppose that we could find two choices for d, d_{1} and d_{2}, giving f_{1} and f_{2}. The composition

$$
f_{1} \circ f_{2}^{-1}: \Delta \longrightarrow \Delta
$$

is a biholomorphic map that fixes the origin. It is therefore a rotation and it is then easy to see that $d_{1}=d_{2}$.
If $d=-\bar{a}$ then it is easy to see that any real number $z=x$ has the same distance to a as to $-\bar{a}$.
Hence every biholomorphic map of the upper half plane \mathbb{H} to the unit disk Δ has the form

$$
z \longrightarrow e^{i \varphi} \frac{z-a}{z-\bar{a}} \quad \text { where } \quad \operatorname{Im} a>0, \varphi \in[0,2 \pi)
$$

(d) a is the inverse image of f. The derivative of f is

$$
f^{\prime}(z)=e_{10}^{i \varphi} \frac{a-\bar{a}}{(z-\bar{a})^{2}} .
$$

Thus

$$
f^{\prime}(0)=e^{i \varphi} \frac{a-\bar{a}}{\bar{a}^{2}} .
$$

It follows that

$$
e^{i \varphi}=f^{\prime}(0) \frac{a-\bar{a}}{\bar{a}^{2}} .
$$

It follows that we can recover φ as the argument of the RHS. As the RHS is determined by f, it follows that we can recover φ from f.

