MODEL ANSWERS TO THE SIXTH HOMEWORK

1. Note that f is not constant by assumption. In particular |f(z)| < M be the maximum principle.

We first prove this for the unit disk. We have

$$f\colon \Delta \longrightarrow \Delta$$

and f has a zero of order m at 0. Schwarz's Lemma implies that

$$|f(z)| \le |z|.$$

Consider

$$g(z) = \frac{f(z)}{z}.$$

Then

$$g\colon \Delta \longrightarrow \Delta$$

and g has a zero of order m - 1 at 0. It follows by induction that

$$|f(z)| \le |z|^m.$$

Further equality holds if and only if

$$f(z) = \lambda z^m,$$

for some scalar λ , with $|\lambda| = 1$.

Now we use the functions α and β in lecture 16.

$$\alpha \colon z \longrightarrow Rz + a$$
 and $\beta \colon z \longrightarrow z/M$

Given

$$f: U \longrightarrow \mathbb{C}$$
 such that $|f(z)| \le M$

 let

$$g = \beta \circ f \circ \alpha \colon \Delta \longrightarrow \Delta.$$

As f has a zero of order m at a, g is a holomorphic map with a zero of order m at 0. By what we already proved

$$g(w)| \le |w|^m$$

Apply the inverse of β to both sides it follows that

$$|(f \circ \alpha)(w)| \le M^m |w|^m$$

Pick $z \in U$. If we put

$$w = \frac{z-a}{1},$$

then $w \in \Delta$ and $\alpha(w) = z$. We have

$$|f(z)| = |f(\alpha(w))|$$

$$\leq M^m |w|^m$$

$$= \frac{M^m}{R^m} |z - a|^m.$$

Now suppose we have equality at some point not equal to a. Then we have equality for g at some point other than 0. But then

$$g(w) = \lambda w^m,$$

for some λ of modulus 1. In this case

$$f(z) = g(w)$$

= $(M^m \lambda) w^m$
= $\frac{M^m \lambda}{R^m} (z - a)^m$.

2. $\psi \colon \Delta \longrightarrow \Delta$ is a biholomorphic map taking a to 0. The composition

$$g = f \circ \psi \colon \Delta \longrightarrow \Delta$$

is a holomorphic map which has a zero of order m at zero. Thus

$$|g(w)| \le |w|^m$$

by Question 1. If $z \in \Delta$ then we may find $w \in \Delta$ such that $\psi(w) = z$. In this case

$$|f(z)| = |f(\psi(w))|$$
$$= |g(w)|$$
$$\leq |w|^m$$
$$= |\psi(z)|^m.$$

It follows that

$$|f(0)| \le |\psi(0)|^m$$

= $|a|^m$.

3. Suppose that f(z) is nowhere zero. Then the function

$$p\colon \Delta \longrightarrow \mathbb{C}$$

given by

$$p(z) = \frac{1}{f(z)}$$

is holomorphic on the closed unit disk. Applying the maximum principle to the closed unit disk we see that |p(z)| achieves its maximum at a point *a* on the circle |z| = 1. We have

$$1 = \frac{1}{|f(0)|}$$
$$= \left|\frac{1}{f(0)}\right|$$
$$= |p(0)|$$
$$< |p(a)|$$
$$= \left|\frac{1}{f(a)}\right|$$
$$= \frac{1}{|f(a)|}$$
$$< 1,$$

which is not possible.

Thus f(z) is zero somewhere in the unit disk. Let

$$g\colon \Delta \longrightarrow \mathbb{C}$$

be given by

$$g(z) = \frac{f(z)}{M}.$$

Note that

$$|g(z)| < 1$$
 on $|z| = 1$.

If a is a zero of f then it is also a zero of g and so by Question 2 we have

$$\frac{1}{M} = \frac{|f(0)|}{M}$$
$$= |g(0)|$$
$$< |a|.$$

4. One direction is clear. If f(z) is a finite Blaschke product then f(z) is holomorphic on the closed unit disk, so that it is certainly holomorphic on Δ and continuous on the closed unit disk and |f(z)| = 1 on |z| = 1, since it is a product of biholomorphic maps of the unit disk to itself. Now suppose that f(z) is holomorphic on Δ , continuous on the closed unit disk and |f(z)| = 1 on the circle |z| = 1. Note that f(z) has only finitely many zeroes since if it had infinitely many zeroes they would accumulate on |z| = 1, contradicting the fact that |f(z)| = 1 on |z| = 1. Let n be the number of zeroes. Suppose first that n = 0, that f(z) is nowhere zero on Δ . We want to show that f(z) is constant. If not then $f(0) = b \in \Delta$. Consider

$$g\colon\Delta\longrightarrow\mathbb{C}$$

given by

$$g(z) = \frac{f(z)}{b}.$$

Then g(0) = 1 and if |z| = 1 then we have

$$|g(z)| = \frac{|f(z)|}{|b|}$$
$$= \frac{1}{|b|}$$
$$> 1.$$

Question 3 implies that g(z) has a zero inside Δ . But a zero of g is a zero of f, which is not possible.

It follows that $f(z) = \lambda$ is a constant. As |f(z)| = 1 it follows that $|\lambda| = 1$ so that $\lambda = e^{i\varphi}$, where $\phi \in [0, 2\pi)$.

Now suppose that n > 0. Let a_1, a_2, \ldots, a_n be the zeroes of f(z), repeated according to multiplicity. Let

$$B(z) = \left(\frac{z-a_1}{1-\bar{a}_1 z}\right) \left(\frac{z-a_2}{1-\bar{a}_2 z}\right) \dots \left(\frac{z-a_n}{1-\bar{a}_n z}\right)$$

and consider

$$g: \Delta \longrightarrow \mathbb{C}$$

given by

$$g(z) = \frac{f(z)}{B(z)}.$$

A priori g(z) is a meromorphic function. However, since every zero of B(z) is matched by a zero of f(z), it follows that g(z) is holomorphic. Similarly g(z) has no zeroes in the unit disk. Note that g(z) extends to a continuous function on the closed unit disk and that on |z| = 1 we have

$$|g(z)| = \left|\frac{f(z)}{B(z)}\right|$$
$$= \frac{|f(z)|}{|B(z)|}$$
$$= 1.$$

As g(z) is nowhere zero on the unit disk it follows that

$$g(z) = e^{i\varphi}$$

by what we already proved. But then f(z) is a finite Blaschke product. 5. There are two ways to proceed. For the first observe that f(z) is a rational function and so it is a meromorphic function. The denominator is zero at $\pm \sqrt{3}i$ and so f is a holomorphic function on Δ which extends to a continuous function on the circle |z| = 1. If $z = e^{i\theta}$ is a point on the unit circle then

$$|1 + 3(e^{i\theta})^2| = |1 + 3(e^{2i\theta})|$$

= |1 + 3(e^{-2i\theta})
= |e^{2i\theta} + 3|.

Thus |f(z)| = 1 on the unit circle. It follows by Question 4 that f is a finite Blaschke product.

For the second we just find an explicit representation of f(z) as a finite Blaschke product. The zeroes of f(z) are at

$$a_1 = \frac{i}{\sqrt{3}}$$
 and $a_2 = -\frac{i}{\sqrt{3}}$.

We have

$$\left(\frac{z-\frac{i}{\sqrt{3}}}{1+\frac{i}{\sqrt{3}}z}\right)\left(\frac{z+\frac{i}{\sqrt{3}}}{1-\frac{i}{\sqrt{3}}z}\right) = \left(\frac{\sqrt{3}z-i}{\sqrt{3}+iz}\right)\left(\frac{\sqrt{3}z+i}{\sqrt{3}-iz}\right)$$
$$= \frac{(\sqrt{3}z-i)(\sqrt{3}z+i)}{(\sqrt{3}+iz)(\sqrt{3}-iz)}$$
$$= \frac{3z^2+1}{3+z^2}$$
$$= f(z).$$

6. We first reduce to the unit disk and then we follow the proof of Schwarz's Lemma. Consider the function

$$g(z) = f(3z) \colon \Delta \longrightarrow \Delta.$$

Then

$$g(\pm 1/3) = 0$$
 and $g(\pm i/3) = 0$.

We want to calculate the maximum value of |g(0)|. Consider the finite Blaschke product

$$B(z) = \left(\frac{z - \frac{1}{3}}{1 - \frac{z}{3}}\right) \left(\frac{z + \frac{1}{3}}{1 + \frac{z}{3}}\right) \left(\frac{z - \frac{i}{3}}{1 + \frac{iz}{3}}\right) \left(\frac{z + \frac{i}{3}}{1 - \frac{iz}{3}}\right)$$

Consider the function

$$h(z) = \frac{g(z)}{B(z)}.$$

This is a meromorphic function on the unit disk. As g is zero at the zeroes of B, which are all simple, it follows that h is a holomorphic function on the unit disk. Consider a circle of radius $r \in (0, 1)$. If |z| = r then

$$|h(z)| = \left| \frac{g(z)}{B(z)} \right|$$
$$= \frac{|g(z)|}{|B(z)|}$$
$$\leq \frac{1}{r}.$$

It follows by the maximum principle that

$$|h(z)| \le \frac{1}{r}$$

on the open disk of radius r. Taking the limit as r approaches one we see that $|h(z)| \leq 1$ on the unit disk. Further equality holds if and only if $h(z) = \lambda$ is a constant of modulus 1.

In particular $|h(0)| \leq 1$ with equality if and only if $h(z) = e^{i\varphi}$. Thus

$$f(0)| = |g(0)| \\ \le |B(0)| \\ = \frac{1}{3^4} \\ = \frac{1}{81},$$

with equality if and only if

$$f(z) = e^{i\varphi}B(z/3).$$

7. We first consider the case $z_0 = r > 0$ and $z_1 = -r$. Given f let

$$g: \Delta \longrightarrow \mathbb{C}$$

be the holomorphic map

$$g(z) = \frac{f(z) - f(-z)}{2}.$$

We have

$$|g(r) - g(-r)| = \left| \frac{f(r) - f(-r)}{2} - \frac{f(-r) - f(r)}{2} \right|$$

= $|f(r) - f(-r)|.$

Note that g(0) = 0 and

$$|g(z)| = \left|\frac{f(z) - f(-z)}{2}\right|$$

$$\leq \frac{1}{2}(|f(z)| + |f(-z)|)$$

$$< 1.$$

If we apply Schwarz's Lemma to g(z) then we get $|g(z)| \le |z|$. Thus

$$|g(r) - g(-r)| \le |g(r)| + |g(-r)|$$
$$\le r + r$$
$$= 2r.$$

If we have equality than

 $|f(z)| \ge |z|$ for all $z \in \Delta$.

Suppose that f(z) is nowhere zero. Then

$$p(z) = \frac{1}{f(z)}$$

is holomorphic on Δ and

$$|p(z)| \le \frac{1}{|z|}.$$

Applying the maximum principle on the circle of radius r we see that

$$|p(z)| \le \frac{1}{r}.$$

Letting r go to one we get

$$|p(z) \le 1.$$

But then

$$|f(z)| \ge 1,$$

which is not possible. Thus f(z) has a zero somewhere. As

$$f(z) \ge |z|$$

we must have f(0) = 0. Schwarz's Lemma then implies that $f(z) = \lambda z$ for some scalar λ such that $|\lambda| = 1$.

Now suppose z_0 and z_1 are general. Let $\alpha \colon \Delta \longrightarrow \Delta$ be any biholomorphic map with inverse β and let $w_i = \alpha(z_i)$, i = 0, 1. If f maximises $|f(z_0) - f(z_1)|$ then $g = f \circ \beta$ maximises

$$|g(w_1) - g(w_0)| = |f(z_0) - f(z_1)|.$$
7

Consider the biholomorphic map α of Δ given by

$$z \longrightarrow \frac{z - z_0}{1 - \bar{z}_0 z}.$$

 α sends z_0 to 0. If we apply a rotation to $\alpha(z_1)$ we may assume that $z_1 = x$ is a positive real.

If we use the biholomorphic map

$$z \longrightarrow \frac{z-r}{1-rz}$$

to move 0 to -r and x to r then we have

$$\frac{x-r}{1-rx} = r \qquad \text{so that} \qquad xr^2 - 2r + x = 0.$$

Solving for r gives

$$\frac{2 \pm \sqrt{4 - 4x^2}}{2x} = \frac{1 \pm \sqrt{1 - x^2}}{x}.$$

We want the negative square root

$$r = \frac{1 - \sqrt{1 - x^2}}{x}.$$

Thus the maximum value is

$$\frac{2 - 2\sqrt{1 - x^2}}{x} \qquad \text{where} \qquad x = \left| \frac{z_1 - z_0}{1 - \bar{z}_0 z_1} \right|$$

8. (a) There are many possibilities. One is

$$\alpha(z) = \frac{i(z+1)}{1-z}.$$

This sends 1 to ∞ , -1 to 0 and *i* to -1. So three points of the unit circle go to three points of the real line. As a Möbius transformation take lines and circles to line and circles, it follows that this transformation takes the unit circle to the real axis. As 0 is sent to *i* it follows the unit disk is carried to the upper half plane.

(b) It is convenient to state an auxiliary result that we will use a little bit later. Consider the extended real line $\mathbb{R} \cup \{\infty\}$. Given any three distinct points α , β and γ of the extended real line, so that α , β and γ are either real numbers or ∞ , there is a unique map

$$f: \mathbb{R} \cup \{\infty\} \longrightarrow \mathbb{R} \cup \{\infty\}$$

of the extended real line to itself, of the form

$$f(x) = \frac{ax+b}{cx+d}$$

where a, b, c and d are real numbers and $ad - bc = \pm 1$.

We follow the same lines of proof as for the complex number. As the composition of Möbius transformations is a Möbius transformation we can prove this in stages. We want to send γ to infinity. We may assume $\gamma \neq \infty$. In this case we take a = 0, b = c = 1 and $d = -\gamma$. From now on we want to fix ∞ , so we look at transformations of the form

$$x \longrightarrow ax + b$$

If we put $b = \alpha$ and a = 1 then we send 0 to α . Now we want to fix both 0 and ∞ . This means we have a transformation of the form

$$x \longrightarrow ax$$

If we put $a = \beta$ then we send 1 to β . We already proved that there is at most one Möbius transformation with complex coefficients sending 0, 1 and ∞ to α , β and γ and so uniqueness is clear. If ad - bc > 0and we multiply top and bottom by the square root of the reciprocal we are reduced to the case ad - bc = 1. If ad - bc < 0 by a similar trick we are reduced to ad - bc = -1.

Let $f: \mathbb{H} \longrightarrow \mathbb{H}$ be a biholomorphic map. Let

$$\beta(z) = \frac{z-1}{z+1}$$

be the inverse of the Möbius transformation α . Then

$$g = \beta \circ f \circ \alpha \colon \Delta \longrightarrow \Delta$$

is a holomorphic map from the unit disk to the unit disk. If f_0 is the inverse of f then $g_0 = \beta \circ f_0 \circ \alpha$ is the inverse of g. As g_0 is holomorphic g is biholomorphic. It follows that g is a Möbius transformation. From the equation $g = \beta \circ f \circ \alpha$ we get $f = \alpha \circ g \circ \beta$. But then f is a Möbius transformation.

Thus every biholomorphic map of the disk to itself is a Möbius transformation. g sends to the unit circle to the unit circle. As α sends the unit circle to the real axis, it follows that f sends the real axis to the real axis.

Consider the image of 0, 1 and ∞ . We get three real numbers α , β and γ . There is a unique Möbius transformation which sends 0, 1 and ∞ to α , β and γ . As we already constructed one Möbius transformation with this property it must be the unique one and so

$$f(z) = \frac{az+b}{cz+d}$$

where a, b, c and d are real and $ab - bc = \pm 1$. Consider

$$f(i) = \frac{ai+b}{ci+d}$$
$$= \frac{(ai+b)(-ci+d)}{c^2+d^2}$$
$$= \frac{ac+bd+i(ad-bc)}{c^2+d^2}$$

By assumption $f(i) \in \mathbb{H}$, so that the imaginary part ad - bc > 0. Thus ad - bc = 1.

(c) If $f: \mathbb{H} \longrightarrow \Delta$ is a biholomorphic map of the upper half plane to the unit disk then $f \circ \alpha \colon \Delta \longrightarrow \Delta$ is a biholomorphic map of the upper half plane to itself, where α is the Möbius transformation introduced in (a). As birational maps of the unit disk are Möbius transformations it follows that $f \circ \alpha$ is a Möbius transformation. Precomposing with the inverse of β and using the fact that the composition of Möbius transformations is a Möbius transformation, we see that f is a Möbius transformation.

As f is biholomorphic there is a point $a \in \mathbb{H}$ mapping to 0. Thus f must have the shape

$$f(z) = \frac{z-a}{cz+d}.$$

The point ∞ must map to a point $e^{i\varphi}$ of the unit circle. Thus

$$f(z) = e^{i\varphi} \frac{z-a}{z+d}.$$

The factor $e^{i\varphi}$ obviously corresponds to a rotation. Suppose that we could find two choices for d, d_1 and d_2 , giving f_1 and f_2 . The composition

$$f_1 \circ f_2^{-1} \colon \Delta \longrightarrow \Delta$$

is a biholomorphic map that fixes the origin. It is therefore a rotation and it is then easy to see that $d_1 = d_2$.

If $d = -\bar{a}$ then it is easy to see that any real number z = x has the same distance to a as to $-\bar{a}$.

Hence every biholomorphic map of the upper half plane $\mathbb H$ to the unit disk Δ has the form

$$z \longrightarrow e^{i\varphi} \frac{z-a}{z-\bar{a}}$$
 where $\operatorname{Im} a > 0, \varphi \in [0, 2\pi).$

(d) a is the inverse image of f. The derivative of f is

$$f'(z) = e^{i\varphi} \frac{a - \bar{a}}{(z - \bar{a})^2}.$$

Thus

$$f'(0) = e^{i\varphi} \frac{a - \bar{a}}{\bar{a}^2}.$$
$$e^{i\varphi} = f'(0) \frac{a - \bar{a}}{\bar{a}^2}.$$

It follows that

It follows that we can recover
$$\varphi$$
 as the argument of the RHS. As the RHS is determined by f , it follows that we can recover φ from f .