MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. We have to compute the sum of the residues of $e^{s t} F(s)$.
(a) Note that

$$
F(s)=\frac{2 s^{3}}{s^{4}-4}
$$

has simple poles at $\pm \sqrt{2}$ and $\pm \sqrt{2} i$. Thus $e^{s t} F(s)$ also has simple poles at $\pm \sqrt{2}$ and $\pm \sqrt{2} i$. We have

$$
\begin{aligned}
\operatorname{Res}_{\sqrt{2} i} \frac{2 s^{3} e^{s t}}{s^{4}-4} & =\lim _{s \rightarrow \sqrt{2} i} \frac{2 s^{3} e^{s t}}{4 s^{3}} \\
& =\lim _{s \rightarrow \sqrt{2} i} \frac{e^{s t}}{2} \\
& =\frac{e^{\sqrt{2} i}}{2}
\end{aligned}
$$

Similarly
$\operatorname{Res}_{-\sqrt{2} i} \frac{2 s^{3} e^{s t}}{s^{4}-4}=\frac{e^{-\sqrt{2} i t}}{2} \quad \operatorname{Res}_{\sqrt{2}} \frac{2 s^{3} e^{s t}}{s^{4}-4}=\frac{e^{\sqrt{2} t}}{2} \quad$ and $\quad \operatorname{Res}_{-\sqrt{2}} \frac{2 s^{3} e^{s t}}{s^{4}-4}=\frac{e^{-\sqrt{2} t}}{2}$.
Thus

$$
\begin{aligned}
f(t) & =\operatorname{Res}_{\sqrt{2} i} \frac{2 s^{3} e^{s t}}{s^{4}-4}+\operatorname{Res}_{-\sqrt{2} i} \frac{2 s^{3} e^{s t}}{s^{4}-4}+\operatorname{Res}_{\sqrt{2}} \frac{2 s^{3} e^{s t}}{s^{4}-4}+\operatorname{Res}_{-\sqrt{2}} \frac{2 s^{3} e^{s t}}{s^{4}-4} \\
& =\frac{e^{\sqrt{2} i} t}{2}+\frac{e^{-\sqrt{2} i t}}{2}+\frac{e^{\sqrt{2} t}}{2}+\frac{e^{-\sqrt{2} t}}{2} \\
& =\cos \sqrt{2} t+\cosh \sqrt{2} t .
\end{aligned}
$$

(b) Note that

$$
F(s)=\frac{2 s-2}{(s+1)\left(s^{2}-2 s+5\right)}
$$

has simple poles at -1 and $1 \pm 2 i$. Thus $e^{s t} F(s)$ also has simple poles at -1 and $1 \pm 2 i$. We have

$$
\begin{aligned}
\operatorname{Res}_{-1} \frac{(2 s-2) e^{s t}}{(s+1)\left(s^{2}-2 s+5\right)} & =\lim _{s \rightarrow-1} \frac{(2 s-2) e^{s t}}{s^{2}-2 s+5} \\
& =\frac{-4 e^{-t}}{8} \\
& =-\frac{e^{-t}}{2} .
\end{aligned}
$$

We also have

$$
\begin{aligned}
\operatorname{Res}_{1+2 i} \frac{(2 s-2) e^{s t}}{(s+1)\left(s^{2}-2 s+5\right)} & =\lim _{s \rightarrow 1+2 i} \frac{(2 s-2) e^{s t}}{(s+1)(2 s-2)} \\
& =\lim _{s \rightarrow 1+2 i} \frac{e^{s t}}{s+1} \\
& =\frac{e^{(1+2 i) t}}{2(1+i)} \\
& =(1-i) \frac{e^{(1+2 i) t}}{4} .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\operatorname{Res}_{1-2 i} \frac{(2 s-2) e^{s t}}{(s+1)\left(s^{2}-2 s+5\right)} & =\frac{e^{(1-2 i) t}}{2(1-i)} \\
& =(1+i) \frac{e^{(1-2 i) t}}{4}
\end{aligned}
$$

Thus

$$
\begin{aligned}
f(t) & =\operatorname{Res}_{-1} F(s) e^{s t}+\operatorname{Res}_{1+2 i} F(s) e^{s t}+\operatorname{Res}_{1-2 i} F(s) e^{s t} \\
& =-\frac{e^{-t}}{2}+(1-i) \frac{e^{(1+2 i) t}}{4}+(1+i) \frac{e^{(1-2 i) t}}{4} \\
& =-\frac{e^{-t}}{2}+e^{t}(1-i) \frac{e^{2 i t}}{4}+(1+i) e^{t} \frac{e^{-2 i t}}{4} \\
& =-\frac{e^{-t}}{2}+\frac{1}{2} e^{t} \cos 2 t+\frac{1}{2} e^{t} \sin 2 t .
\end{aligned}
$$

(c) Note that

$$
F(s)=\frac{12}{s^{3}+8}
$$

has simple poles at

$$
2 e^{\pi i / 3} \quad-2 \quad \text { and } \quad 2 e^{5 \pi i / 3}
$$

Thus $e^{s t} F(s)$ also has simple poles at the same points. We have

$$
\begin{aligned}
\operatorname{Res}_{2 e^{\pi i / 3}} \frac{12 e^{s t}}{s^{3}+8} & =\lim _{s \rightarrow 2 e^{\pi i / 3}} \frac{12 e^{s t}}{3 s^{2}} \\
& =\frac{12 e^{2 t e^{\pi i / 3}}}{12 e^{2 \pi i / 3}} \\
& =e^{2 t e^{\pi i / 3}} e^{4 \pi i / 3} \\
& =e^{t+i \sqrt{3} t} e^{4 \pi i / 3}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\operatorname{Res}_{2 e^{5 \pi i / 3}} \frac{12 e^{s t}}{s^{3}+8} & =\lim _{s \rightarrow 2 e^{5 \pi i / 3}} \frac{12 e^{s t}}{3 s^{2}} \\
& =\frac{12 e^{2 t e^{5 \pi i / 3}}}{12 e^{4 \pi i / 3}} \\
& =e^{2 t e^{5 \pi i / 3}} e^{2 \pi i / 3} \\
& =e^{t-i \sqrt{3} t} e^{2 \pi i / 3}
\end{aligned}
$$

We also have

$$
\begin{aligned}
\operatorname{Res}_{-2} \frac{12 e^{s t}}{s^{3}+8} & =\lim _{s \rightarrow-2} \frac{12 e^{s t}}{3 s^{2}} \\
& =\frac{12 e^{-2 t}}{12} \\
& =e^{-2 t} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
f(t) & =\operatorname{Res}_{-2} \frac{12 e^{s t}}{s^{3}+8}+\operatorname{Res}_{2 e^{\pi i / 6}} \frac{12 e^{s t}}{s^{3}+8}+\operatorname{Res}_{2 e^{5 \pi i / 6}} \frac{12 e^{s t}}{s^{3}+8} \\
& =e^{-2 t}+e^{t+i \sqrt{3} t} e^{4 \pi i / 3}+e^{t-i \sqrt{3} t} e^{2 \pi i / 3} \\
& =e^{-2 t}+e^{t}\left(e^{i t \sqrt{3}} e^{4 \pi i / 3}+e^{-i \sqrt{3} t} e^{2 \pi i / 3}\right) \\
& =e^{-2 t}+e^{t}(-\cos \sqrt{3} t+\sqrt{3} \sin \sqrt{3} t) .
\end{aligned}
$$

2. It is easy to see that $z \longrightarrow a z+b$ is a biholomorphic map, with inverse

$$
z \longrightarrow \frac{z-b}{a}
$$

Conversely, let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be a biholomorphic map. Consider the behaviour of f at infinity. As f is entire and not constant it must be unbounded as it approaches infinity.
In particular f must have a singularity at infinity. Suppose that the singularity is essential. The Casorati-Weierstrass theorem implies that f approaches every single complex number $a \in \mathbb{C}$. This is impossible as f is a bijection.
Thus f has a pole at infinity. It follows that f is a rational function

$$
f(z)=\frac{p(z)}{q(z)}
$$

where $p(z)$ and $q(z)$ are polynomials. If $p(z)$ and $q(z)$ have a common zero then they share the same linear factor. Cancelling, we may assume that $p(z)$ and $q(z)$ have no common zeroes.

Suppose that $q(z)$ has positive degree. Then $q(z)$ must have a zero and this would be a pole of $f(z)$, which is not possible, as f is entire. Thus $f(z)$ is a polynomial.
If the degree of $f(z)$ is at least two, then the derivative of $f(z)$ is a polynomial of degree at least one. But then the derivative has a zero, which is impossible as f is biholomorphic.
Thus $f(z)$ is a polynomial of degree at most one, so that

$$
f(z)=a z+b,
$$

where a and $b \in \mathbb{C} . a \neq 0$, otherwise $f(z)$ is constant.
3. We have already seen that Möbius transformations give biholomorphic maps of the extended complex plane.
Conversely, let f be a biholomorphic map of the extended complex plane. Suppose that f sends ∞ to a. If $a=\infty$ then let

$$
\alpha: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}
$$

be the identity. Otherwise let α be the biholomorphic map of the extended complex plane given by

$$
z \longrightarrow \frac{1}{z-a}
$$

Then $g=\alpha \circ f$ is a biholomorphic map of the extended complex plane that sends ∞ to ∞. By what we already proved $g(z)=a z+b$. In particular g is a Möbius transformation. Thus the inverse of g is a Möbius transformation and so f is a Möbius transformation.
4. Suppose that

$$
f: \Delta \longrightarrow \Delta
$$

is a biholomorphic map with fixed point a. Let

$$
\alpha: \Delta \longrightarrow \Delta
$$

be the biholomorphic map

$$
\alpha(z)=\frac{z-a}{1-\bar{a} z}
$$

so that $\alpha(a)=0$. Let β be the inverse of α. Then

$$
g=\alpha \circ f \circ \beta: \Delta \longrightarrow \Delta
$$

is a biholomorphic map that fixes zero. It follows that g is a rotation. In particular if g has more than one fixed point it is the identity.
Note that b is a fixed point of f if and only if $c=\alpha(b)$ is a fixed point of g. Thus if f has more than one fixed point then g has more than one fixed point and so g is the identity. But then f is the identity.
5. We first do long division to find $p_{\infty}(z)$. Note that

$$
z^{6}=\left(z^{2}+2 z+2\right)\left[\left(z^{2}+1\right)(z-1)^{2}\right]+\left[2 z^{3}-z^{2}+2 z-2\right] .
$$

It follows that $p_{\infty}(z)=z^{2}+2 z+2$ and

$$
\frac{z^{6}}{\left(z^{2}+1\right)(z-1)^{2}}=z^{2}+2 z+2+\frac{2 z^{3}-z^{2}+2 z-2}{\left(z^{2}+1\right)(z-1)^{2}} .
$$

Now

$$
\frac{2 z^{3}-z^{2}+2 z-2}{\left(z^{2}+1\right)(z-1)^{2}}
$$

has poles at $\pm i$ and 1 . The poles at $\pm i$ are simple but 1 is a double pole. It follows that

$$
\frac{2 z^{3}-z^{2}+2 z-2}{\left(z^{2}+1\right)(z-1)^{2}}=\frac{\alpha}{z-i}+\frac{\beta}{z+i}+\frac{\gamma}{z-1}+\frac{\delta}{(z-1)^{2}},
$$

where the first term is the principal part at i, the second term is the principal part at $-i$, the last two terms are the principal part at 1 , and α, β, γ and δ are to be determined.
The first three coefficients are residues. We have

$$
\begin{aligned}
\alpha & =\operatorname{Res}_{i} \frac{2 z^{3}-z^{2}+2 z-2}{\left(z^{2}+1\right)(z-1)^{2}} \\
& =\lim _{z \rightarrow i} \frac{2 z^{3}-z^{2}+2 z-2}{(z+i)(z-1)^{2}} \\
& =\frac{-1}{2 i(i-1)^{2}} \\
& =\frac{i(i+1)^{2}}{8} \\
& =-\frac{1}{4}
\end{aligned}
$$

Taking complex conjugates we see that

$$
\beta=-\frac{1}{4}
$$

At 1 we have

$$
\begin{aligned}
\alpha & =\operatorname{Res}_{1} \frac{2 z^{3}-z^{2}+2 z-2}{\left(z^{2}+1\right)(z-1)^{2}} \\
& =\lim _{z \rightarrow 1} \frac{\mathrm{~d}}{\mathrm{~d} z}\left(\frac{2 z^{3}-z^{2}+2 z-2}{z^{2}+1}\right) \\
& =\lim _{z \rightarrow 1} \frac{\left(6 z^{2}-2 z+2\right)\left(z^{2}+1\right)-2 z\left(2 z^{3}-z^{2}+2 z-2\right)}{\left(z^{2}+1\right)^{2}} \\
& =\frac{12-2}{4} \\
& =\frac{5}{2} .
\end{aligned}
$$

To find δ we multiply both sides by $z-1$ and then we find the residue at 1:

$$
\begin{aligned}
\delta & =\operatorname{Res}_{1} \frac{2 z^{3}-z^{2}+2 z-2}{\left(z^{2}+1\right)(z-1)} \\
& =\lim _{z \rightarrow 1} \frac{2 z^{3}-z^{2}+2 z-2}{z^{2}+1} \\
& =\frac{1}{2} .
\end{aligned}
$$

It follows that
$\frac{z^{6}}{\left(z^{2}+1\right)(z-1)^{2}}=z^{2}+2 z+2-\frac{1}{4(z-i)}-\frac{1}{4(z+i)}+\frac{5}{2(z-1)}+\frac{1}{2(z-1)^{2}}$,
6. Consider the biholomorphic map

$$
\alpha: \mathbb{C} \longrightarrow \mathbb{C} \quad \text { given by } \quad \alpha(z)=R z .
$$

The composition $g=h \circ \alpha$ is a continuous funcion on the unit circle. It follows that

$$
v(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-r^{2}}{1-2 r \cos (\phi-\theta)+r^{2}} g\left(e^{i \theta}\right) \mathrm{d} \phi
$$

is a harmonic function on the unit disk Δ with a continuous extension to the closed unit disk whose restriction ot the unit circle is g.
The inverse of α is the map

$$
\beta: \mathbb{C} \longrightarrow \mathbb{C} \quad \text { given by } \quad \beta(z)=\frac{z}{R}
$$

As β is holomorphic the function

$$
u(r, \theta)=v(r / R, \theta)
$$

is then a harmonic function on the open disk U with a continuous extension to the boundary where it is equal to $h\left(R e^{i \theta}\right)$.

We have

$$
\begin{aligned}
u(r, \theta) & =v(r / R, \theta) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-(r / R)^{2}}{1-2(r / R) \cos (\phi-\theta)+(r / R)^{2}} g\left(e^{i \theta}\right) \mathrm{d} \phi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{R^{2}-r^{2}}{R^{2}-2 r R \cos (\phi-\theta)+r^{2}} h\left(R e^{i \theta}\right) \mathrm{d} \phi
\end{aligned}
$$

Challenge Problems: (Just for fun)
7. (a) Show that every biholomorphic map of $U=\mathbb{C}-\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, the complex plane punctured at finitely many points, is a Möbius transformation that permutes the points of

$$
\left\{a_{1}, a_{2}, \ldots, a_{n}, \infty\right\}
$$

(b) Find the biholomorphic maps of $U=\mathbb{C}-\{0,1\}$.
(c) Find the biholomorphic maps of $U=\mathbb{C}-\{-1,0,1\}$.
(d) Find the biholomorphic maps of $U=\mathbb{C}-\{-1,0,2\}$.
8. Let $f: \Delta \longrightarrow \Delta$ be a holomorphic map that is not biholomorphic. Show that if f has a fixed point a and f_{n} is the nth iterate of f (that is, compose f with itself n times) then the sequence of points

$$
b \quad f_{1}(b)=f(b) \quad f_{2}(b)=f(f(b)) \quad \ldots
$$

converges to a, for any $b \in \Delta$.

