
MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. We have to compute the sum of the residues of estF (s).
(a) Note that

F (s) =
2s3

s4 − 4

has simple poles at ±
√

2 and ±
√

2i. Thus estF (s) also has simple poles
at ±
√

2 and ±
√

2i. We have

Res√2i
2s3est

s4 − 4
= lim

s→
√
2i

2s3est

4s3

= lim
s→
√
2i

est

2

=
e
√
2it

2
.

Similarly

Res−
√
2i

2s3est

s4 − 4
=
e−
√
2it

2
Res√2

2s3est

s4 − 4
=
e
√
2t

2
and Res−

√
2

2s3est

s4 − 4
=
e−
√
2t

2
.

Thus

f(t) = Res√2i
2s3est

s4 − 4
+ Res−

√
2i

2s3est

s4 − 4
+ Res√2

2s3est

s4 − 4
+ Res−

√
2

2s3est

s4 − 4

=
e
√
2it

2
+
e−
√
2it

2
+
e
√
2t

2
+
e−
√
2t

2

= cos
√

2t+ cosh
√

2t.

(b) Note that

F (s) =
2s− 2

(s+ 1)(s2 − 2s+ 5)
.

has simple poles at −1 and 1± 2i. Thus estF (s) also has simple poles
at −1 and 1± 2i. We have

Res−1
(2s− 2)est

(s+ 1)(s2 − 2s+ 5)
= lim

s→−1

(2s− 2)est

s2 − 2s+ 5

=
−4e−t

8

= −e
−t

2
.
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We also have

Res1+2i
(2s− 2)est

(s+ 1)(s2 − 2s+ 5)
= lim

s→1+2i

(2s− 2)est

(s+ 1)(2s− 2)

= lim
s→1+2i

est

s+ 1

=
e(1+2i)t

2(1 + i)

= (1− i)e
(1+2i)t

4
.

Similarly

Res1−2i
(2s− 2)est

(s+ 1)(s2 − 2s+ 5)
=

e(1−2i)t

2(1− i)

= (1 + i)
e(1−2i)t

4
.

Thus

f(t) = Res−1 F (s)est + Res1+2i F (s)est + Res1−2i F (s)est

= −e
−t

2
+ (1− i)e

(1+2i)t

4
+ (1 + i)

e(1−2i)t

4

= −e
−t

2
+ et(1− i)e

2it

4
+ (1 + i)et

e−2it

4

= −e
−t

2
+

1

2
et cos 2t+

1

2
et sin 2t.

(c) Note that

F (s) =
12

s3 + 8
has simple poles at

2eπi/3 − 2 and 2e5πi/3.

Thus estF (s) also has simple poles at the same points. We have

Res2eπi/3
12est

s3 + 8
= lim

s→2eπi/3

12est

3s2

=
12e2te

πi/3

12e2πi/3

= e2te
πi/3

e4πi/3

= et+i
√
3te4πi/3.
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Similarly

Res2e5πi/3
12est

s3 + 8
= lim

s→2e5πi/3

12est

3s2

=
12e2te

5πi/3

12e4πi/3

= e2te
5πi/3

e2πi/3

= et−i
√
3te2πi/3.

We also have

Res−2
12est

s3 + 8
= lim

s→−2

12est

3s2

=
12e−2t

12
= e−2t.

Thus

f(t) = Res−2
12est

s3 + 8
+ Res2eπi/6

12est

s3 + 8
+ Res2e5πi/6

12est

s3 + 8

= e−2t + et+i
√
3te4πi/3 + et−i

√
3te2πi/3

= e−2t + et
(
eit
√
3e4πi/3 + e−i

√
3te2πi/3

)
= e−2t + et(− cos

√
3t+

√
3 sin

√
3t).

2. It is easy to see that z −→ az + b is a biholomorphic map, with
inverse

z −→ z − b
a

.

Conversely, let f : C −→ C be a biholomorphic map. Consider the
behaviour of f at infinity. As f is entire and not constant it must be
unbounded as it approaches infinity.
In particular f must have a singularity at infinity. Suppose that the
singularity is essential. The Casorati-Weierstrass theorem implies that
f approaches every single complex number a ∈ C. This is impossible
as f is a bijection.
Thus f has a pole at infinity. It follows that f is a rational function

f(z) =
p(z)

q(z)
,

where p(z) and q(z) are polynomials. If p(z) and q(z) have a common
zero then they share the same linear factor. Cancelling, we may assume
that p(z) and q(z) have no common zeroes.
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Suppose that q(z) has positive degree. Then q(z) must have a zero and
this would be a pole of f(z), which is not possible, as f is entire. Thus
f(z) is a polynomial.
If the degree of f(z) is at least two, then the derivative of f(z) is a
polynomial of degree at least one. But then the derivative has a zero,
which is impossible as f is biholomorphic.
Thus f(z) is a polynomial of degree at most one, so that

f(z) = az + b,

where a and b ∈ C. a 6= 0, otherwise f(z) is constant.
3. We have already seen that Möbius transformations give biholomor-
phic maps of the extended complex plane.
Conversely, let f be a biholomorphic map of the extended complex
plane. Suppose that f sends ∞ to a. If a =∞ then let

α : P1 −→ P1

be the identity. Otherwise let α be the biholomorphic map of the
extended complex plane given by

z −→ 1

z − a
Then g = α ◦ f is a biholomorphic map of the extended complex plane
that sends ∞ to ∞. By what we already proved g(z) = az + b. In
particular g is a Möbius transformation. Thus the inverse of g is a
Möbius transformation and so f is a Möbius transformation.
4. Suppose that

f : ∆ −→ ∆

is a biholomorphic map with fixed point a. Let

α : ∆ −→ ∆

be the biholomorphic map

α(z) =
z − a
1− āz

so that α(a) = 0. Let β be the inverse of α. Then

g = α ◦ f ◦ β : ∆ −→ ∆

is a biholomorphic map that fixes zero. It follows that g is a rotation.
In particular if g has more than one fixed point it is the identity.
Note that b is a fixed point of f if and only if c = α(b) is a fixed point
of g. Thus if f has more than one fixed point then g has more than
one fixed point and so g is the identity. But then f is the identity.
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5. We first do long division to find p∞(z). Note that

z6 = (z2 + 2z + 2)[(z2 + 1)(z − 1)2] + [2z3 − z2 + 2z − 2].

It follows that p∞(z) = z2 + 2z + 2 and

z6

(z2 + 1)(z − 1)2
= z2 + 2z + 2 +

2z3 − z2 + 2z − 2

(z2 + 1)(z − 1)2
.

Now

2z3 − z2 + 2z − 2

(z2 + 1)(z − 1)2

has poles at ±i and 1. The poles at ±i are simple but 1 is a double
pole. It follows that

2z3 − z2 + 2z − 2

(z2 + 1)(z − 1)2
=

α

z − i
+

β

z + i
+

γ

z − 1
+

δ

(z − 1)2
,

where the first term is the principal part at i, the second term is the
principal part at −i, the last two terms are the principal part at 1, and
α, β, γ and δ are to be determined.
The first three coefficients are residues. We have

α = Resi
2z3 − z2 + 2z − 2

(z2 + 1)(z − 1)2

= lim
z→i

2z3 − z2 + 2z − 2

(z + i)(z − 1)2

=
−1

2i(i− 1)2

=
i(i+ 1)2

8

= −1

4
.

Taking complex conjugates we see that

β = −1

4
.
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At 1 we have

α = Res1
2z3 − z2 + 2z − 2

(z2 + 1)(z − 1)2

= lim
z→1

d

dz

(
2z3 − z2 + 2z − 2

z2 + 1

)
= lim

z→1

(6z2 − 2z + 2)(z2 + 1)− 2z(2z3 − z2 + 2z − 2)

(z2 + 1)2

=
12− 2

4

=
5

2
.

To find δ we multiply both sides by z− 1 and then we find the residue
at 1:

δ = Res1
2z3 − z2 + 2z − 2

(z2 + 1)(z − 1)

= lim
z→1

2z3 − z2 + 2z − 2

z2 + 1

=
1

2
.

It follows that

z6

(z2 + 1)(z − 1)2
= z2+2z+2− 1

4(z − i)
− 1

4(z + i)
+

5

2(z − 1)
+

1

2(z − 1)2
,

6. Consider the biholomorphic map

α : C −→ C given by α(z) = Rz.

The composition g = h ◦ α is a continuous funcion on the unit circle.
It follows that

v(r, θ) =
1

2π

∫ 2π

0

1− r2

1− 2r cos(φ− θ) + r2
g(eiθ) dφ

is a harmonic function on the unit disk ∆ with a continuous extension
to the closed unit disk whose restriction ot the unit circle is g.
The inverse of α is the map

β : C −→ C given by β(z) =
z

R
.

As β is holomorphic the function

u(r, θ) = v(r/R, θ)

is then a harmonic function on the open disk U with a continuous
extension to the boundary where it is equal to h(Reiθ).
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We have

u(r, θ) = v(r/R, θ)

=
1

2π

∫ 2π

0

1− (r/R)2

1− 2(r/R) cos(φ− θ) + (r/R)2
g(eiθ) dφ

=
1

2π

∫ 2π

0

R2 − r2

R2 − 2rR cos(φ− θ) + r2
h(Reiθ) dφ

Challenge Problems: (Just for fun)

7. (a) Show that every biholomorphic map of U = C−{a1, a2, . . . , an},
the complex plane punctured at finitely many points, is a Möbius trans-
formation that permutes the points of

{ a1, a2, . . . , an,∞}.
(b) Find the biholomorphic maps of U = C− {0, 1}.
(c) Find the biholomorphic maps of U = C− {−1, 0, 1}.
(d) Find the biholomorphic maps of U = C− {−1, 0, 2}.
8. Let f : ∆ −→ ∆ be a holomorphic map that is not biholomorphic.
Show that if f has a fixed point a and fn is the nth iterate of f (that
is, compose f with itself n times) then the sequence of points

b f1(b) = f(b) f2(b) = f(f(b)) . . .

converges to a, for any b ∈ ∆.
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