HOMEWORK 1, DUE FRIDAY JANUARY 17TH, 12PM

1. Let a be a complex number and let $\rho>0$ be a positive real. Show that the equation

$$
|z|^{2}-2 \operatorname{Re}(\bar{a} z)+|a|^{2}=\rho^{2}
$$

represents a circle centred at a with radius ρ.
2. Consider the polynomial $p(z)=z^{3}+z^{2}+z+1$.
(a) Verify that i is a root of $p(z)$.
(b) Find the other roots.
3. For which integers n is i an nth root of unity?
4. Let $n \geq 1$ be an integer.
(a) Show that

$$
1+z+z^{2}+z^{3}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z}
$$

(b) Show that

$$
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin \left(n+\frac{1}{2}\right) \theta}{2 \sin \frac{\theta}{2}}
$$

5. Show that

$$
\left(\frac{1+i \tan \theta}{1-i \tan \theta}\right)^{n}=\frac{1+i \tan n \theta}{1-i \tan n \theta}
$$

for every integer n.
6 . Find the distinct sixth roots of -64 .
7. Show that

$$
(1-\sqrt{3} i)^{10}=2^{9}(-1+\sqrt{3} i)
$$

Challenge Problems: (Just for fun)
8. Prove the triangle inequality

$$
|z+w| \leq|z|+|w|,
$$

with equality if and only if either $z=0$ or w is a positive real scalar multiple of z.

