HOMEWORK 2, DUE FRIDAY JANUARY 24TH, 12PM

1. Find formulas for

$$
\cos 4 \theta \quad \text { and } \quad \sin 4 \theta
$$

involving only $\cos \theta$ and $\sin \theta$.
2. (a) Show that

$$
z^{n}-1=(z-1)\left(z^{n-1}+z^{n-2}+\cdots+z+1\right) .
$$

(b) Show that if ζ is an nth root of unity then either $\zeta=1$ or

$$
\zeta^{n-1}+\zeta^{n-2}+\cdots+\zeta+1=0
$$

3. Let z and w be complex numbers.
(a) Show that

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2} \quad \text { and } \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i}
$$

(b) Show that cos and sin are periodic functions with period 2π.
(c) Prove the addition formulas:

$$
\begin{aligned}
\cos (z+w) & =\cos z \cos w-\sin z \sin w \\
\sin (z+w) & =\cos z \sin w+\sin z \cos w .
\end{aligned}
$$

4. The functions

$$
\sinh : \mathbb{C} \longrightarrow \mathbb{C} \quad \text { and } \quad \cosh : \mathbb{C} \longrightarrow \mathbb{C}
$$

are defined by

$$
\cosh (z)=\cos (i z) \quad \text { and } \quad \sinh (z)=-i \sin (i z)
$$

(a) Show that
$\cos z=\cos x \cosh y-i \sin x \sinh y \quad$ and $\quad \sin z=\sin x \cosh y+i \cos x \sinh y$
(b) Show that

$$
|\cos z|^{2}=\cos ^{2} x+\sinh ^{2} y \quad \text { and }|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y
$$

where $z=x+i y$.
(c) Find all zeroes of the cosine and sine functions, that is, find all solutions of

$$
\cos z=0 \quad \text { and of } \quad \sin z=0 .
$$

(d) Find all periods of the cosine and sine functions.
5. (a) Show that the function $z \longrightarrow z^{2}$ maps the region

$$
\{z \in \mathbb{C} \mid \operatorname{Re}(z)>0, \operatorname{Im}(z)>0\}
$$

that is, the first quadrant, to the region

$$
\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

that is, the upper half plane.
(b) Find a function $f: \mathbb{C} \longrightarrow \mathbb{C}$ that maps the region

$$
\{z \in \mathbb{C} \mid 0<\operatorname{Arg}(z)<\pi / 3\}
$$

to the upper half plane

$$
\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

(c) Find a function $f: \mathbb{C} \longrightarrow \mathbb{C}$ that maps the region

$$
\{z \in \mathbb{C} \mid 0<\operatorname{Arg}(z)<\pi / n\}
$$

to the upper half plane

$$
\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

(d) Show that the function $z \longrightarrow 1 / z$, maps the region

$$
\{z \in \mathbb{C}|0<|z|<1\}
$$

that is, the punctured unit disc, to the region

$$
\{z \in \mathbb{C}|1<|z|\}
$$

that is, the outside of the unit disc.
Challenge Problems: (Just for fun)
6. Find all possible values of i^{i}. How about

$$
i^{i^{i}} ?
$$

7. Find a function that maps the upper half plane

$$
\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

to the unit disc:

$$
\Delta=\{z \in \mathbb{C}| | z \mid<1\} .
$$

8. Given three distinct points p, q and r of the extended complex plane (so that p, q and r are either complex numbers or ∞) show that there is a unique Möbius transformation

$$
z \longrightarrow \frac{a z+b}{c z+d}
$$

taking p to $0, q$ to 1 and r to ∞.

